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Abstract This paper presents a methodology to predict the shape of solute breakthrough curves in
heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the
classical macrodispersion theory may not be applicable. The methodology relies on the observation that
breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and
mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient
to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity
and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression.
Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate
the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical
contributions include heuristics for the time until an effective macrodispersion coefficient becomes
applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen
that the results here represent a way to derive continuous time random walk transition distributions from
physical considerations rather than from empirical field calibration.

1. Introduction

It is widely recognized that solute transport in real aquifers is characterized by asymmetric plumes and
heavy-tailed breakthrough curves. This behavior may be advection driven (created by neighboring stream
tubes with significantly different velocities; e.g., Edery et al., 2014), or diffusion driven (caused by mobile-
immobile trapping processes that sever the link between advection and transport; e.g., Haggerty et al,
2000). In this paper, we consider the former mechanism.

Macrodispersion theory represented the first attempt to model such conditions. This theory is based on
implicitly smoothing heterogeneous media to an equivalent homogeneous continuum, and then adding an
artificial Fickian dispersion term to capture the scattering effects of the disregarded heterogeneity. The prac-
tical motivation for this maneuver is the impossibility of characterizing small-scale heterogeneity. The cen-
tral limit theorem provides justification for attempting such a characterization in some cases, as large
particle motions may be considered as the sum of smaller motions, and if these motions are considered as
independent draws from the same distribution, their sum will have a Gaussian distribution. This sum distri-
bution (representative of relative plume concentration) may thus be described by an equivalent Fickian
model. Classic papers of the early 1980s (Dagan, 1982; Gelhar & Axness, 1983) derived the corresponding
coefficients by small-perturbation analysis, following on earlier numerical research (e.g., Schwartz, 1977).

In stationary, heterogeneous, 3-D hydraulic conductivity (K) fields, Gelhar and Axness (1983) employed spec-
tral techniques to determine a macrodispersion coefficient in terms of the Eulerian velocity covariance
structure and to express this in terms of the spatial covariance structure of the log-hydraulic conductivity
field. We denote this covariance function by Cinx(Ax), where K stands for hydraulic conductivity and A,
for the separation distance. For different domains in which the Fourier transform of the Eulerian velocity
covariance structure may be calculated analytically, different macrodispersion coefficients may be com-
puted. A limitation of this theory is its assumption of small perturbations in the concentration (Rubin, 2003,
p. 178), regardless of the assumptions underlying the computation of the Eulerian velocity covariance. An
alternative approach, based on Lagrangian ideas, does not explicitly make small-concentration-fluctuation
assumptions. Many explicit solutions have been derived using this framework (e.g., Dagan, 1989). However,
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the Lagrangian velocity covariance structure is difficult to measure directly or to compute (Woodbury &
Rubin, 2000), and it is often rewritten as function of the macroscopic mean groundwater velocity and the
Eulerian velocity covariance structure. This itself embeds a small variance assumption (Rubin, 2003, p. 219).

It should thus be clear that, despite the variety of different analytical solutions in the literature, there are
two major problems implicit in the use of the macrodispersion ideas, even assuming that Cj,x(Ax) is known
and aquifer statistics are stationary. First, moderately heterogeneous aquifers for which o-lan = Cnk(0) > 1
are common in practical hydrogeology, invalidating small-fluctuation assumptions. Second, Fickian behavior
will only be observed after some time, and behavior before this point will appear anomalous (Dentz et al.,
2004). Some work has been done on both of these questions.

Interest in arbitrarily large values of o2, has existed for a long time. One approach has been simply to
ignore a2 ,, and to use regression analysis to seek an empirical relationship between distance from source
and effective macrodispersivity (see e.g., Zech et al.,, 2015, and works cited therein). However, this approach
has not led to a strong general relationship (although different, more consistent relationships were found
by Zech et al. (2015) at individual sites). Other authors have used a combination of analytical and numerical
approaches to specifically study macrodispersion coefficients for larger o2, ,. Neuman and Zhang (1990)
employed mathematical arguments pointing to a linear increase in the late-time-effective macrodispersion
coefficient as a function of a7, , although subsequent studies have gone against this. Bellin et al. (1992) indi-
cated an Eulerian velocity covariance that increased faster than linearly with o2 .. Salandin and Fiorotto
(1998) were among the first to employ numerical simulations, observing the implied macrodispersion coeffi-
cients for values of o2, , up to 4. Their simulations covered only early time, and they did not find late-time
asymptotic values of the macrodispersivity: they considered times up to dimensionless time T = 20, where T
is defined as T = % Here t is travel time since solute release, U is average groundwater velocity in the prin-
cipal direction, and /ihk is the integral scale of the spatially distributed K-field. T may be thought of as the
number of integral scales traveled by the plume centroid in time t. Another approach to this problem has
been the so-called self-consistent approach (e.g., Cvetkovic et al., 2014; Dagan et al., 2003; Di Dato et al.,
2016), which assumes that the aquifer is an effectively homogeneous medium with spheroidal or cuboidal
inclusions of different hydraulic conductivity. Subject to a number of approximations, this approach makes
it possible to formally write the longitudinal macrodispersivity as a multidimensional integral over the joint
pdf of inclusion radius and conductivity and the asymptotic trajectory deflection due to a single such inclu-
sion (Dagan et al., 2003).

Authors have differed greatly on the length of time necessary to reach “late time,” and for macrodispersiv-
ities to converge. A pair of early analytical and numerical studies (Dentz et al.,, 2000, 2002) found, for
at =1, that the macrodispersivity stabilized at T= 50. Jankovi¢ et al. (2003) performed a numerical particle
tracking study in a 3-D model with spherical inclusions, found that macrodispersivity had stabilized by
T =40, for a2, < 4. Trefry et al. (2003) did partial differential equation (PDE) simulations in 2-D for several
individual realizations with high local-scale dispersivity (local-scale Peclet number, Pe = "TK of 10-20), find-
ing that even at T> 300, the asymptotic state may not have been reached, although for variances 2.5
< o}, < 4 this state was apparently obtained by that point. (In this document, we use the term local-scale
dispersion to refer to dispersive processes below the scale at which the velocity field is discretized.) Trefry
et al. (2003) also compared the entropy of the plumes in 2-D and found that plumes remained far from
Gaussian (although this is a stricter criterion than Gaussian entropy viewed only in 1-D or linear increase of
second-central spatial moments with time). Beaudoin and De Dreuzy (2013) performed many 3-D particle
tracking simulations and tabulated ensemble particle spatial variances over time from the numerical results.
From the rates of change, longitudinal macrodispersivities were estimated. These were found to stabilize
between T =10 for o2 ,=1and T = 100 for o2, ,=4.

Macrodispersion, like local-scale dispersion, is an amplification process in which the effect of smaller-scale
scattering is increased by the proximity of nearby streamlines with different velocities (Werth et al.,, 2006). In
the limit of no local-scale dispersion, the distribution of breakthrough times at a plane is purely determined
by the flux-weighted transit time distribution for the individual stream tubes. In the other limit, extremely
large values of “local-scale” dispersion dominate any macrodispersive effects, and the macrodispersion
equals the local-scale dispersion. Literature studies have considered finite Pe that range from approximately
10 (Trefry et al., 2003) to 10,000 (Srzic et al., 2013), and some (e.g., Beaudoin & De Dreuzy, 2013; Jankovic¢
et al.,, 2003) have considered no local-scale dispersion, implying Pe=cc. Srzic et al. (2013) reported that that
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Pe was important for the time until the plume becomes ergodic (Dagan & Fiori, 1997; Fiori, 1996). However,
for longitudinal macrodispersion, Dentz et al. (2002) considered local-scale dispersion ranging 4 orders of
magnitude above that of pure diffusion and o7, ,=1 and found only small sensitivity of the macrodispersion
coefficient to the local-scale dispersion strength. Similarly, Jankovi¢ et al. (2003) found, for o7, < 4, little
effect of local-scale dispersion.

So far, we have mentioned studies analyzing the spatial spread of solute clouds that are released at time
zero. Another perspective of potential interest in practical applications is breakthrough curve analysis, con-
sidering the passage of particles at a fixed plane downgradient of the source. Early semianalytic work in this
direction, for aquifers with small variability, was performed by Cvetkovic et al. (1992) and Dagan et al.
(1992). Bellin et al. (1994) continued this analysis numerically. Trefry et al. (2003) also considered break-
through curves at control planes in 2-D domains and found that these were well described by a Fickian
model, even at centroid travel distances for which the 2-D plume was significantly non-Gaussian. Gotovac
et al. (2009) performed a numerical particle tracking study which considered breakthrough curves at multi-
ple planes and showed breakthrough curves were well described by lognormal distributions for values of
ot < 4, with performance degrading gradually in the late-time tail for larger degrees of heterogeneity.
Lognormal breakthrough distributions have also recently been endorsed for non-Gaussian (persistent and
antipersistent) correlation structures (Moslehi & de Barros, 2017).

Given the potentially long travel times and distances until a macrodispersive model is valid, as well as the fact
that the aquifer needs to be statistically stationary over a substantially larger scale, recent efforts have focused
on upscaling techniques that capture the behavior of the preasymptotic regime. Modeling transport with the
continuous time random walk (CTRW) method (Berkowitz et al., 2006) is a technique that has proven success-
ful for preasymptotic behavior (e.g., Dentz et al.,, 2004; Levy & Berkowitz, 2003; Rubin et al.,, 2012). CTRW is also
applicable to 1-D approximations of advective solute transport, with early consideration being seen in Margo-
lin and Berkowitz (2004). Such a 1-D CTRW was explicitly proposed as an upscaling framework—the so-called
RP-CTRW—for flow in heterogeneous aquifers by Hansen and Berkowitz (2014). In this approach, solute trans-
port is fully described by a parameterized travel-time distribution from one observation plane to the next, and
breakthrough curves at distances of several observation planes are obtained by convolving the travel-time
distribution with itself. The latter authors also showed the predictive nature of the CTRW in that context, dem-
onstrating consistency in the CTRW transition distributions that best matched breakthrough curves at several
planes at different distances from a source in a single model. This conclusion was reinforced by Fiori et al.
(2015), through reanalysis of another data set. They again found that CTRW parameters calibrated from early
breakthrough locations well matched breakthrough at downgradient locations.

In the following, we will, informed by knowledge of the predictive nature of plane-to-plane CTRW transition,
per Hansen and Berkowitz (2014), and lognormality of breakthrough, per Gotovac et al. (2009), seek to
ground this lognormal distribution in conductivity statistics. In this way, we seek to combine the predictive
nature of the macrodispersion theory (which may be used to predict breakthrough based on conductivity
field statistics but has been limited to mildly heterogeneous aquifers and/or late time) and the more recent
CTRW theory (which has demonstrated excellent performance at capturing realistic behavior in a range of
circumstances, but which has not been fit predictively).

We approach this task from a computational perspective, running particle tracking simulations on multiple
realizations, collecting statistics, and performing a modified polynomial regression to determine the best
descriptive model. In particular, the log-variance of the breakthrough curve shape is expressed as a function
of two parameters of a locally isotropic, lognormally distributed hydraulic conductivity field with an expo-
nential semivariogram. While isotropy is not characteristic of natural media, it has been found that the lon-
gitudinal particle displacement variance underlying longitudinal macrodispersion is insensitive to the
transverse anisotropy (Rubin & Ezzedine, 1997), and isotropy is thus a common assumption to make in
numerical studies of macrodispersive processes (e.g., Beaudoin & De Dreuzy, 2013; Cvetkovic et al., 1996;
Dentz et al., 2002). The multi-Gaussian assumption has been used in virtually all the aforementioned numer-
ical studies, but its effect has not been quantified; this analysis is saved for a follow-up study. The two pre-
dictive parameters considered are the integral scale and the log-variance of the conductivity field. Using
data from the multiple realizations, we also consider the intrarealization variability of the breakthrough
curves for point sources at different locations, and the consequent degree of predictive power that the
regression possesses for these.
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Other goals of this paper include computationally evaluating late-time macrodispersion coefficients based
on our simulations, determining heuristics for onset of “late time” in this context, and evaluating previously
proposed models for macrodispersion coefficients. In the CTRW context, our regression allows prediction of
transition distributions in the upscaled, discretized RP-CTRW framework, which may be of use in the upscal-
ing of field-scale transport. Our analysis also provides support for the idea that truncated (or tempered)
power laws are fundamental, and arise as a natural generalization of the macrodispersion theory.

In section 2, we develop the theoretical ideas underpinning our analysis and show how it relates mathemat-
ically to both the macrodispersion and the CTRW theories. In section 3, we describe our numerical proce-
dure. In section 4, we discuss the results of our statistical analyses. Finally, in section 5, we summarize our
findings and make suggestions for future work.

2. Theory

In this section, we discuss results from two bodies of theory—the macrodispersion theory and the CTRW
theory—and discuss how our contributions relate to both.

2.1. Relationship to the Macrodispersion Theory
In effectively homogeneous media, it has long been established (Kreft & Zuber, 1978, equation 11) that, for
instantaneous release in flux and detection in flux, the flux concentration, ¢y, satisfies the equation

1 exp | — (x—Ut)?
(4nDt)? 4Dt

where x is the distance downgradient from the release location, t is time since release, D is an effective dis-
persion coefficient, U is the mean groundwater velocity, n is the porosity, and M is the amount of solute
injected per unit area transverse to mean flow. The right-hand side of (1) can be considered as proportional
to a pdf (corresponding to an inverse Gaussian distribution) of t. This pdf has known expected value y, and
variance o2 (Kreft & Zuber, 1978):

) m

U
n—cf(x, t)=

X
M t

X
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Consider the statistics of breakthrough at a given plane x units downgradient of another parallel plane from
which particles are randomly released in a flux-weighted fashion at time 0, and imagine that we desire to
determine the macrodispersion coefficient, D, using relationships given above. For coherence with exist-
ing notation, we will let D, =D. Then, combining (2) and (3) yields

2,2
t

aix
Dy= . 4

T8 4)
From this, it follows that if an empirical breakthrough curve is well modeled by an inverse Gaussian distribu-

tion, it is possible to infer the implied macrodispersion coefficient.

As mentioned, other authors have argued that the lognormal distribution well describes particle break-
through over a wide range of subsurface heterogeneities, up to about o2 ,=4. For small log-variances
(6%,, < 0.5), and we refer here to the log-variances of travel time, not K, the lognormal and inverse Gaussian
distributions are essentially identical. By this is meant: if a large number of draws are taken from a lognor-
mal distribution with moderate log-variance, the inverse Gaussian pdf matching the empirical mean and
variance will be near-identical to the lognormal pdf from which the samples were drawn. On account of the
central limit theorem, one would expect the log-variance of breakthrough curves to decrease (i.e., symmetry
to increase) with increasing distance from the source, and thus for the calibrated lognormal breakthrough
curve to imply an effective D, via (4).

For small a2, , at late time in a 3-D isotropic medium with an exponential covariance structure, it is a classic
result (see e.g., Rubin, 2003, equation 10.19) that the following relationship holds
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Do =03 khnkU. (5)

It is interesting to verify the degree to which this small-heterogeneity approximate macrodispersion coeffi-
cient relates to the empirical one from the regression, as a function of a2, .. We consider this matter in sec-
tion 4.4, and at length in Appendix B.

2.2. Relationship to CTRW Theory

The CTRW paradigm (Berkowitz et al., 2006) is known as a means of capturing realistic solute transport,
including transport with heavy-tailed breakthrough curves or asymmetrical plumes. Hansen and Berkowitz
(2014) argued that for advection-dominated anomalous transport in heterogeneous media, essentially all
information about breakthrough curves is encoded in a point-to-point transition time pdf, y(t). This
approach has also previously been proposed (as the time domain random walk) as a numerical method for
solving Fickian transport problems (Banton et al, 1997) and for transition of fracture network sections
(Delay & Bodin, 2001). Within this approach, we consider a fixed transition distance, Ax, greater than the
correlation length of the velocity field (which, per Fiori & Jankovic, 2012, may be significantly larger than
the correlation length of the K-field), and model the solute behavior by a random walker whose position in
space and time after the nth transition, (X, t,), is updated via the following relations:

Xn+1=Xn+AX, (6)
tn+1:tn+Atn, (7)

where each At is a random time increment drawn from the same pdf, i:
Aty ~ Y(t; AX). (8)

Provided that y(t) is sufficient to determine breakthrough curves at arbitrary locations, the question of
which functional form corresponds to realistic behavior arises. Recent papers have argued the fundamental
form of s is a power law with exponential tempering. In a systematic particle tracking study under a variety
of statistical conditions, Edery et al. (2014) showed that this form well described the histogram of flux-
weighted transition times across small intervals (they fit what is known as a truncated power law; a shifted
Pareto distribution with exponential tempering). Similarly, in a survey of hydrologic models for point-to-
point breakthroughs, Cvetkovic (2011) argued that essentially all probability models in current use were of
the same form, with power law tails and late-time exponential tempering, although Cvetkovic et al. (2014)
present a specific system architecture for which they argue such models are not appropriate.

We concur with the recent assessment that power laws with exponential tailing are fundamental and show
how they are actually apparent in what is seemingly a completely “classical” problem: solution of the advec-
tion dispersion equation with an instantaneous solute release for breakthrough at a location downgradient.
In fact, as we show in Appendix A for small Peclet numbers (1) has a truncated power law tail. Thus, it is rea-
sonable to attempt to understand (moderately) heterogeneous advective transport phenomena by both
CTRW and classical techniques.

In the macrodispersion context of section 2.1, the breakthrough curve shape was tied to D, which is in turn
tied (under mild K-field variability) to subsurface parameters. We desire to accomplish the same sort of predic-
tion for y/(t) in terms of subsurface parameters, under more general conditions: either prior to the applicability
of the macrodispersion regime, or in it, but for large o2, , which are not covered by (5). Note that for a fixed
location, Ucr and s both represent temporal arrival time distributions. Thus, provided Ax is much greater than
the velocity correlation length (implying Ax > Ii,), there is a simple relationship between the two:

W(t; Ax)= %c,«(Ax, t). 9

3. Numerical Analysis

The numerical experiments at the heart of this study are performed in simulated 3-D domains containing a
heterogeneous, locally isotropic hydraulic conductivity field. Eighty conductivity field realizations are cre-
ated for the study, all using the same basic computational technique. Each conductivity field realization is a
box with length L,=200 m in the xpo direction, length L, =50 m in the yuo direction, and length
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A
Iog10 K [Kin m/s]

100

ybox (m]

Figure 1. Example realization of a single box in the case of o2, , =4.

L, =50 m in the zyo direction, is divided into 0.5 m cubic cells, each of which is assigned a spatially distrib-
uted In K value based on multivariate normally simulated, spatially periodic realizations (Dykaar & Kitanidis,
1992). Figure 1 shows an example realization.

The hydraulic conductivity in each cubic cell of the box representing a single conductivity field is drawn
from a lognormal distribution. The geometric mean of K is 1E-4 m/s, and the log-variance is fixed for any
given realization. The target spatial covariance structure is described by an exponential semivariogram with
target a integral scale, Ik, of 3.33 m in all directions, whose actual value varies slightly between realizations.
The semivariogram, y, is mathematically defined according to

y(h) =0k [1 —exp (Lﬂ (10
IInK

where h is the separation distance between two points. Note that periodicity implies that
p(Li+h)=v(h), where i stands in for x, y, or z. We ensure periodicity in all three spatial directions. We
apply periodic boundary conditions with a trend in the mean. That is, for any two opposite faces of the
box, each pair of opposing points on those faces has the same head drop between them as every other
pair of opposing points on those same faces. For clarity: opposing points on the two faces defined by
Xpox=—100 and xpox="100 are those with the same coordinates (¥pox, Zbox) ON €ach of those faces, and
similarly for other opposing pairs of faces. The head drop between each opposing pair of faces is
adjusted so that the mean advection velocity, U, is purely in the x direction, and has magnitude 1E-
6 m/s. A porosity of 0.3 is assumed.

One may imagine filling space by endlessly repeating this box, “gluing” together opposite faces in such a
way that all opposing points are identified, to create a 3-D-periodic structure whose period in each direction
is equal to the length of the box in that direction, aligning the local (Xpox, Ybox; Zbox) COOrdinate system in
each box with the global (x, y, z) coordinate system. The flow field derived from solving the groundwater
flow equation on the box under periodic boundary conditions is valid throughout space, and one does
not have to be concerned with the effects of no-flow or fixed-head boundary conditions, as in other
approaches.

In such a periodic environment, particle tracking may be performed using only the single box described ini-
tially: when a particle travels outward through a point on a boundary of the box in the i direction, it is
moved to the opposing point on the opposite face and continues its motion, with its global coordinate
incremented or decremented by L, as appropriate. The particle is imagined as “really” being in the
unbounded global coordinate system, but for simulation purposes never leaves the box.
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Particle tracking is performed using the semianalytical method of Pollock (1988). Each single transition
consists of pure advection along a streamline until the particle reaches a cubic cell boundary, followed by a
dispersive motion in the y and z directions. The magnitude of each of these transverse dispersive motions is
determined by a draw from the distribution N(0, 2zA), where A, is the distance traveled by pure advection
in the x direction during the current transition, and «, the pore-scale transverse dispersivity, is always
5E-4 m. For clarity, we may explicitly write the particle position update equation as

xn+1:xn+Axn+£1j+C2k7 (1)

where x, represents the particle position after the nth transition, Ax, represents the advective motion
on the nth transition, j and k are the respective y and z coordinate unit vectors, and
{1 ~ {5 ~ N(0,20Ay). The addition of local-scale dispersion makes breakthrough times for particles
released at the same location nondeterministic and allows for analysis of breakthrough statistics as a
function of release location.

For each realization of the K-field, particle tracking is performed by releasing 40 particles from each of the
center points of the 10,000 upgradient faces of the cubic cells that lie on each of 10 planes orthogonal to
the mean flow velocity (with locations xp0x=20n—120, for n =1 to 10). For each particle, the plane on which
it is released is identified with x = 0 in the global coordinate system. Each particle is tracked downgradient
until its “global” x coordinate reaches L,. Each particle’s first passage of the 25 planes located at x= % units
downgradient of its release location, n =1-25, its arrival time is recorded, along with its release location
(plane indeX, ybox, and zpox). The purpose behind performing multiple flux-weighted releases at planes, each
separated by multiple integral scales, within a single K-field realization is to increase the number of “effec-
tive realizations” for calibration of early-time behavior.

A set of eight variances, o2, € [0.5,4], linearly spaced in the interval and including both end points, are
used to simulate ten realizations of K, for a total of 80 distinct particle tracking simulations performed.

All simulations are performed using a MATLAB code which we have made available in the supporting infor-
mation of the article. To accelerate the particle tracking, we perform the relevant calculations on GPUs,
using the capabilities of the MATLAB Parallel Computing Toolbox.

The breakthrough data from these simulations were used for the statistical analyses that underpin the
claims of the paper. Three separate analyses are performed:

1. Point breakthrough curve coherence (this is to say, the dependence of breakthrough curve statistics on
release location) is analyzed.

2. A regression is performed against variance of the InK field and the dimensionless distance from the
source, X = x/link, with the aim of predicting flux-averaged breakthrough curves. This regression is based
on the following observations regarding breakthrough curves:

a. They are well described by lognormal distributions (Gotovac et al., 2009). We also verified this using
our data set (see Appendix C).

b. The (dimensional) mean arrival time at distance x downgradient is well described by u, (=i‘—1) for
X > ot where U is computed by Darcy’s law using the geometric mean hydraulic conductivity
(Guadagnini, 2003). Verification of this result using our data set is shown in Appendix B.

c. All else being equal, with greater heterogeneity of the In K field, breakthrough curves are less symmet-
rical (variance of the log breakthrough time is larger). All else being equal, with greater distance from
the release location, breakthrough curves are more symmetrical (variance of the log breakthrough time
is smaller).

3. The required travel distance until an ADE analysis with an effective macrodispersion coefficient can be
used is assessed, using the theory developed in section 2.1 and Appendix B.

4, Results and Discussion

4.1. Predictive Regression

As K-field variability and distance from source are expected to be determinants of breakthrough behavior, it
is reasonable to attempt to predict o7,,, the variance of the natural logarithm of (flux-weighted) particle
arrival times which defines the lognormal breakthrough curve, as a function of a2, , and X. We approach this
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Figure 2. Regression for In-variance of breakthrough curve as a function of X
and a?, : 3-D view of regression surface shown along with the data points used
to train it.

problem by means of polynomial regression. We compute the var-
iances of the natural logarithm of (flux-weighted) particle arrival
times at each of the planes at which breakthrough was recorded, for
each of the ten K-field realizations, for each of the eight K-field het-
erogeneity levels. These are plotted as 3-D scatter points in Figure 2.
A third-order bivariate polynomial regression of natural logarithm of
these variances is computed against X and a2, ,. We thus arrive at the
predictive relationship

3.3
7 “fnk>=eXp{ZZciJ x}

i=0 j=0

(12)

where i and j represent the powers of a2, and X employed in the
polynomial regression, and whose fitted coefficients, ¢;;, are com-
piled in Table 1. The order of the regression is arbitrary, and is
selected because it is the lowest power that qualitatively appears to
give a good fit to the data. The regression surface (i.e., the surface
defined by (12)) is also shown in Figure 2.

The mean breakthrough time for a particle, independent of o, is
well described by x/U (Guadagnini, 2003). Combining this with our
presumption of lognormality of breakthrough curves, we predict

that the breakthrough curve at distance x from the source for a Dirac upgradient boundary condition,

e (0,1)=4(t), satisfies

nU
ch(x7 t):

2
t(Znafm(ﬁ))

2
_ 1,2
(int=in 3 +107,5))

20 (i)

1.2

7exp (13)

This is to say, the breakthrough curve is the pdf for InN (In 7 300t (,L) , oﬁ,(,i)). Equation (13) can also
InK InK
be rewritten in terms of the dimensionless variables X and T:

nU

— 1 —
m = L.nJ T(mot (X)) {

(14)

(INX=InT+ %JIZM(X))2
207,,(X) ’

nUcr

where only the square-bracketed component is dimensional (required because "' is a temporal density).
Note that the right-hand side is proportional to the plane-to-plane transition time pdf, defining an RP-CTRW
(or TDRW) transition time distribution for transitions of fixed length, X. The various o2, are plotted as 3-D
scatter points, superimposed on the calibrated regression surface in Figure 2.

4.2. Independence of Release Location

It is unlikely that a solute source is uniformly distributed over a plane, and much more likely that there is a
quasi-point source (spatially localized in all dimensions, and of a maximum scale that is small with respect
to the distance from the breakthrough location of interest to the centroid of the source). For predictive
modeling, we would like to establish the degree to which a breakthrough curve at a given compliance

plane is affected by the release location.

Table 1
Third-Degree Polynomial Regression Coefficients c; for Use in (12)

J

0 1 2 3

It is intuitive that, with increasing distance from the source, a particle
will sample more of the heterogeneity, and the release location will
have less impact on the shape of the breakthrough curve. At the same
time, one might expect that in more heterogeneous media, for any
given distance from the source, there will be more dependence on
release locations (as there is more variability to sample before ergo-
dicity is achieved). Our investigations bear out those qualitative pre-

i 0 —2.5053 —1.1081E-1 1.9189E-3 —1.3370E-5  dictions. Figure 3 shows individual point-release breakthrough curves
! 20522 SRl —3.3316E5 for different degrees of K-field heterogeneity and distances from
2 —5.9726E-1 —2.7550E-4 . T .
3 6.6112E-2 the source, expressed as cumulative distribution functions (CDF). To

provide more quantitative guidance, we compute coherence statistics
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Figure 3. Each of the four plots shows the empirical breakthrough curves (expressed as arrival time CDFs) for approximately 1E3 randomly selected release points
out of the 1E5 in single K-field realizations (thin, colored lines). Superimposed on each is the corresponding regression prediction using (12) (thick black-and-
white-dashed lines). Plots in each column are from the same realization; plots in each row are from the same distance from the source. Note that the empirical
breakthrough curves are truncated at the first particle arrival time and do not extend to zero.

for each value of a2, ,, at each distance downgradient of the source at which breakthrough curves are tabu-
lated. In particular, it is noted that the largest divergence between breakthrough curves lies in their late-
time tails. Consequently, the average (over the 10 realizations) variance of the natural logarithm of the 50%
breakthrough time for each of the 100,000 release locations in that K-field realization is tabulated. This is
shown in Figure 4. While an acceptable level of deviation will vary by application, it is apparent that as a
function of a2, ,, the travel distance until a given deviation threshold is reached increases rapidly.

4.3. Convergence to Macrodispersion Theory
Above, we noted that at late times the predicted o,¢(X) of the breakthrough curves is less than 0.5 for all
aink (see Figure 2). This means that the breakthrough at X is equally well modeled by an inverse Gaussian
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Figure 4. Color map of average (over all realizations) variance In t for 50%
breakthrough of the solute as function of distance from the source, X, and sub-
surface heterogeneity, o2, .

distribution (1), as it is by a lognormal distribution. Like the lognormal,
the inverse Gaussian is determined by the first two moments of the
arrival time, t(X). Using (4), we may then predict the macrodispersion
coefficient implied by the breakthrough curves at successive planes.
The Fickian dispersion coefficient in an ADE model represents an
intrinsic, local scattering propensity, and the concept of a plume-
scale-dependent dispersion coefficient—though one of course may
be fit to any plume—is not sensible in this context. Thus, it is reason-
able to define the onset of the macrodispersion regime as the time
at which D, as determined by this equation no longer changes at
planes with greater distances from the source. This was found to be a
distance of X = 40, for all subsurface heterogeneity levels considered.
(See Appendix B for further discussion.)

4.4. Comparisons With Existing Literature

To our knowledge, this is the first paper which calibrates a predictive
relationship for breakthrough curve behavior before the macrodisper-
sion regime, so we cannot directly compare with existing predictive
models. However, to improve confidence in our results, we opted to
demonstrate our flux-weighted breakthrough curve prediction against
breakthrough curve data presented by another research group
(Gotovac et al., 2009, Figure 4), for a single realization using a different
numerical code. In Figure 5, we present the breakthrough data shown
by Gotovac et al. to an upgradient pulse injection of solute into a ran-

domly generated multi-Gaussian K-field with o7, =1, at three distances: X = 10, X = 20, and X = 40. Super-
imposed on these are the flux-weighted breakthrough curves determined via the regression calibrated
from our study (12). The data in Gotovac et al. are expressed in terms of the dimensionless time, T, however
the values of U and I,k were not specified in their paper, we were obligated to fit them. We found that the
choice of U= 1.05, lj,x=1 gave reasonable results, and these are the values used in Figure 5. Our prediction
aligns relatively well with the Gotovac et al. data. As in our own study, we see that the prediction quality of

100 -
s X=10
— X =20
— X=40

107"

102 F

[T

[m]

o
109 F
104 F
100

Figure 5. Simulated breakthrough data from a single realization with o2, , =1
presented in Figure 4 of Gotovac et al. (2009; disconnected markers) compared
with ensemble-averaged predictions using (12) (solid lines).

our calibrated curves increase with X.

For the breakthrough curves in the macrodispersion regime, there is
some prior art. In addition to the classic macrodispersion formula (5),
Beaudoin and De Dreuzy (2013) performed a numerical study from
which they propose a nondimensionalized empirical expression (their
equation 9) for a late-time longitudinal macrodispersivity, o.,, which
applies for 2, greater than those for which the classical macrodisper-
sion formula (5) is valid. Adapting it in terms of the quantities
employed in this work is straightforward, as it follows from their defi-
nition of o, that Dy, =0 /inxU. Using this relation allows us to rewrite

their expression as
2
Oink
ex .
P (1 .55)

A comparison of the late-time effective D, determined from our com-
putational study with two alternative expressions—the classical rela-
tion (5), and the more recent computationally derived equation (15)—
is presented in Figure 6. Based on our results, usage of the classical
relation appears valid at late time (equivalently, large distances from
the source) for a7, in the range [0, 2]. Beyond that point, our relation
diverges, but increases more gently than the Beaudoin and de Dreuzy
expression (15). Possible reasons for the discrepancy include our
incorporation of local-scale dispersion and differing modeling
assumptions.

Dy
IInKU

(15)
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Figure 6. Comparison of the (nondimensionalized) late-time-implied macrodis-
persion coefficient, as computed from simulated breakthrough curve data in
this study using equation (4) (black circles), as interpolated by (16) (black dot-
ted curve), as estimated by the classical macrodispersion perturbation theory
(5) (red curve), and as estimated by Beaudoin and de Dreuzy (15) (blue curve).

The macrodispersion coefficient derived from our simulations can be
approximately interpolated by the following formula, as shown in Figure 6:

DOC 2.72
=0\ - 16
Iln KU Oink ( )

We note that on the right-hand side of this equation, we are concep-
tually taking the unit-independent quantity a2, to the power 1.36, so
both sides of the equation are effectively dimensionless.

5. Summary and Conclusions

The primary contribution of this paper has been the development of a
predictive equation relating flux-weighted breakthrough curves in
locally isotropic heterogeneous porous media to the underlying multi-
Gaussian covariance structure of the log-hydraulic conductivity field,
valid for larger conductivity field variability (o2, , < 4) and earlier (prea-
symptotic) times than the classical macrodispersion theory. The predic-
tive equation, outlined in (12) and Table 1, has been obtained via
polynomial regression on a large synthetic data set. Error estimates of
the predicted flux-weighted breakthrough curves (which assume a large
solute source extent transverse to mean flow) relative to point-release
breakthrough curves have been presented. The theory presented here
represents a way of predicting transition distributions in the RP-CTRW
framework that would previously have required calibration against
experimental data or have been without empirical grounding. It has also
been observed that the macrodispersion theory, under highly dispersive
conditions, provides grounding for the commonly supposed truncated
power law form of the CTRW transition distribution (Appendix A).

A method for computing the macrodispersion coefficient from plane breakthrough data, rather than deriva-
tives of whole-plume moments, has also been presented (4), and compared with an alternative approach
(B2) in Appendix B, where estimates of the travel distance required for coefficients computed using these
equations to reach their asymptotic values are also presented. Furthermore, (4) has been applied to the syn-
thetic data set to determine an expression (16) for late-time macrodispersion that is valid for larger o2
than the classic, perturbation-based macrodispersion theory. It was seen from this analysis that the classical
theory obtains approximately for o7, , < 2. For larger values of o7, ,, a more mild increase in macrodisper-
sion was found than in the recent work by Beaudoin and De Dreuzy (2013).

Given that previous studies have pointed in some different directions, we believe that further simulation
studies using alternative numerical implementations and different assumptions would be beneficial for
increasing confidence in underlying principles that have been identified. Non-Gaussian correlation struc-
tures have been found to have a significant impact on subsurface behavior (Haslauer et al., 2010, 2012) and
exploring them in the context of solute breakthrough would throw light on the robustness of relationships
developed using the Gaussian idealization. Furthermore, the interplay of local-scale dispersion and a2, , has
a potentially important predictive role to play and has been little studied. These studies have been left for

future work.

Appendix A: The Inverse Gaussian Distribution as Truncated Power Law

In (1), observe that the square-bracketed term is just the standard Gaussian spatial concentration profile,
converted to a temporal density by the factor %. If the Gaussian is narrow, then x/t is approximately constant,
and the breakthrough curve is quasi-Gaussian. To see the nature of the breakthrough curve when the
Gaussian distribution defined in the brackets is wide, it is helpful to put the solution in a different form. We

may rewrite (1) in terms of an alternative Peclet number, 2

yields

= Y% and dimensionless time, 7 = 2L This
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3 9 20“
n—Ucf(gf’,T)z L] T‘iexp{g}exp{—y J}exp{—L}, (A1)
M X2 (4m)? 2 4 47

where only the square-bracketed term is dimensional. In our problem, D, is constant, and for breakthrough
at a fixed location, so is x. We note that for 7 > 1,

p2
(2, T) x T rexp { - ‘749’}. (A2)

This is to say, the breakthrough curve tail is a power law with exponential tempering. We see that if 2 is
small, the tempering term will be near unity, and one will be faced with significant power law behavior.

A: Empirical velocity
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Figure B1. (a) Empirical flux-weighted solute velocity divided by mean groundwater flow velocity as a function of dimen-
sionless distance from source. (b) Implied macrodispersion coefficient (4) (solid lines) and estimated ensemble macrodis-
persion a coefficient (B2) (dashed lines) as functions of dimensionless distance from source.

HANSEN ET AL. 282



@AG U Water Resources Research

10.1002/2017WR020450

P(T) for o2, = 0.5 P(T) for o2, = 1.0 P(T) foro?, = 1.5
0.999 0.999 - 0.999
/ i /
0.977 / 0.977 / 0.977 L
B
0.841 0.841 0.841
= 0.500 = 0.500 E 0.500
o - o
0.159 0.159 0.159
0.023 0.023 / 0.023
4
0.001 <= 0.001 < 0.001 L
0.8 1 1.2 14 0.6 0.8 1 12 14 16 1.8 05 1 1.5 2
X1 TX? TX?
P(T) for o2 = 2.0 P(T) foro2 = 2.5 P(T) for o2 = 3.0
0.999 Lulls - 0.999 ink 0.999 Ink —
f // _,//
0.977 0.977 Pt 0.977 /
0.841 0.841 0.841
E 0.500 E 0.500 E 0.500
o o - o
0.159 0.159 0.159
0.023 0.023 0.023
P
0.001 0.001 = 0.001 <<
0.5 1 15 2 25 0.5 1 15 2 25 100
Tx1 TXx?! TXx?!
P(T) for o2  =3.5 P(T) for o2 = 4.0
0.999 Ink — 0.999 UL
e /,//
0.977 s 0.977 /
=
0.841 0.841
£ 0.500 £ 0.500
o o
0.159 0.159
0.023 / 0.023 /
0.001 0.001
10° 10°
Tx1! Tx?!

Figure C1. Probability plots of CDF, P, versus arrival time at X = 48 for eight values of o2, .. Logarithmic scaling has been applied to each horizontal axis and inverse
Normal scaling to each vertical axis, illustrating lognormality of arrival times.

Appendix B: Evolution of Empirical Velocity and Macrodispersion

We compute the first and second flux-weighted temporal moments for all planes at which breakthrough
data was tabulated, respectively m;(x) and m,(x) and evaluate the second-central temporal moment
a2(x)=ma(x)—m?(x). Approximate spatial derivatives are computed at each plane by finite differences,
which enables computation of empirical particle velocities and dispersion coefficients. Computation of

empirical velocity, Vemp, is straightforward:
dm1 -
veo =g ) -

The variation of empirical velocity with distance is shown in Figure B1. It is apparent effective solute velocity
closely matches U for all ¢, , corroborating our approach and indicating that artificial dispersion into low-K
regions is negligible in our simulations.

(B1)

We next consider the definition of macrodispersion in terms of the solute plume second-central moment,

2
Dy = %d;;. Assuming the plume to have a Gaussian profile in the direction of flow and a sufficiently small
variance that we may use the approximation ¥ =~ U ~ Vemp, We may, by inspection of (1), conclude that
0% R Vinp07- We can thus define the macrodispersion approximation
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Both the implied D, (4) and the approximation, D, are shown as a function of distance in Figure B1. It is
apparent that, regardless of how it is calculated, the macrodispersion coefficient stabilizes within the
domain, indicating that our simulations are large enough to capture both preasymptotic and postasymp-
totic behavior. It is noteworthy, however, that the distance until the estimate of D, stabilizes depends on
how it is computed. The approximation based on plume moments approximates its asymptotic value by
roughly X = 10, whereas the value implied by breakthrough curve behavior does so by X = 40. The implied
macrodispersion expression is exact (4) and does not rely on spatial quadrature, whereas (B2), although
approximate, is well defined in the preasymptotic regime. For large X (equivalently, large T), both the plume
moment and breakthrough-curve-implied formulations are equivalent.

Appendix C: Verification of Breakthrough Curve Lognormality

Our regression (12) provides a prediction of the variance of log-arrival times, provided the dimensionless
distance from the injection plane, X, and o2, . Coupled with the assumption of lognormality of break-
through curves and an expression for mean arrival time, this is sufficient to completely specify the break-
through curve. Here we evaluate the assumption of lognormality by selecting a fixed X, X =48, and
computing empirical flux-weighted CDFs of log-arrival time Int, P(Int; o7, ) for each of, . If N7'(-) is the
inverse CDF for a normal distribution with the correct mean and variance, it follows that N~ ' (P(Int; 62, )
will be a linear function of Int, and that a plot of P against t with suitable nonlinear axis scaling (respec-
tively, according to N™! and logarithmic) will be a straight line. We illustrate that this is (nearly) the case
for all 6, in Figure C1, indicating that the assumption of lognormal flux-weighted breakthrough curves
is reasonable. As indicated in Gotovac et al. (2009), gradual loss of fidelity is seen in the tails with increas-
ing a2, .

References

Banton, O., Delay, F., & Porel, G. (1997). A new time domain random walk method for solute transport in 1-D heterogeneous media. Ground
Water, 35(6), 1008-1013.

Beaudoin, A., & De Dreuzy, J. R. (2013). Numerical assessment of 3-D macrodispersion in heterogeneous porous media. Water Resources
Research, 49, 2489-2496.

Bellin, A., Rubin, Y., & Rinaldo, A. (1994). Eulerian-Lagrangian approach for modeling of flow and transport in heterogeneous geological for-
mations. Water Resources Research, 30(11), 2913-2924.

Bellin, A., Salandin, P., & Rinaldo, A. (1992). Simulation of dispersion in heterogeneous porous formations: Statistics, first-order theories,
convergence of computations. Water Resources Research, 28(9), 2211-2227.

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random
walk. Reviews of Geophysics, 44, RG2003.

Cvetkovic, V. (2011). The tempered one-sided stable density: A universal model for hydrological transport? Environmental Research Letters,
6(3), 034008.

Cvetkovic, V., Cheng, H., & Wen, X.-H. (1996). Analysis of nonlinear effects on tracer migration in heterogeneous aquifers using Lagrangian
travel time statistics. Water Resources Research, 32(6), 1671-1680.

Cvetkovic, V., Fiori, A, & Dagan, G. (2014). Solute transport in aquifers of arbitrary variability: A time-domain random walk formulation.
Water Resources Research, 50, 5759-5773.

Cvetkovic, V., Shapiro, A. M., & Dagan, G. (1992). A solute flux approach to transport in heterogeneous formations: 2. Uncertainty analysis.
Water Resources Research, 28(5), 1377-1388.

Dagan, G. (1982). Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water
Resources Research, 18(4), 835-848.

Dagan, G. (1989). Flow and transport in porous formations. Berlin, Germany: Springer.

Dagan, G., Cvetkovic, V., & Shapiro, A. (1992). A solute flux approach to transport in heterogeneous formations: 1. The general framework.
Water Resources Research, 28(5), 1369-1376.

Dagan, G., & Fiori, A. (1997). The influence of pore-scale dispersion on concentration statistical moments in transport through heteroge-
neous aquifers. Water Resources Research, 33(7), 1595-1605.

Dagan, G., Fiori, A., & Jankovic, I. (2003). Flow and transport in highly heterogeneous formations: 1. Conceptual framework and validity of
first-order approximations. Water Resources Research, 39(9), 1268.

Delay, F., & Bodin, J. (2001). Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in frac-
ture networks. Geophysical Research Letters, 28(21), 4051-4054.

Dentz, M., Cortis, A., Scher, H., & Berkowitz, B. (2004). Time behavior of solute transport in heterogeneous media: Transition from anoma-
lous to normal transport. Advances in Water Resources, 27(2), 155-173.

Dentz, M., Kinzelbach, H., Attinger, S., & Kinzelbach, W. (2000). Temporal behavior of a solute cloud in a heterogeneous porous medium: 1.
Point-like injection. Water Resources Research, 36(12), 3591-3604.

Dentz, M., Kinzelbach, H., Attinger, S., & Kinzelbach, W. (2002). Temporal behavior of a solute cloud in a heterogeneous porous medium: 3.
Numerical simulations. Water Resources Research, 38(7).

HANSEN ET AL.

284



@AG U Water Resources Research 10.1002/2017WR020450

Di Dato, M., de Barros, F. P. J., Fiori, A., & Bellin, A. (2016). Effects of the hydraulic conductivity microstructure on macrodispersivity. Water
Resources Research, 52, 6818-6832.

Dykaar, B. B., & Kitanidis, P. K. (1992). Determination of the effective hydraulic conductivity for heterogeneous porous-media using a
numerical spectral approach: 1. Method. Water Resources Research, 28(4), 1155-1166.

Edery, Y., Guadagnini, A., Scher, H., & Berkowitz, B. (2014). Origins of anomalous transport in heterogeneous media: Structural and dynamic
controls. Water Resources Research, 50, 1490-1505.

Fiori, A. (1996). Finite Peclet extensions of Dagan'’s solutions to transport in anisotropic heterogeneous formations. Water Resources
Research, 32(1), 193-198.

Fiori, A., & Jankovic, I. (2012). On preferential flow, channeling and connectivity in heterogeneous porous formations. Mathematical Geo-
sciences, 44(2), 133-145.

Fiori, A, Zarlenga, A., Gotovac, H., Jankovic, I, Volpi, E., Cvetkovic, V., & Dagan, G. (2015). Advective transport in heterogeneous aquifers:
Are proxy models predictive? Water Resources Research, 51, 9577-9594.

Gelhar, L. W., & Axness, C. L. (1983). Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Research, 19(1),
161-180.

Gotovac, H., Cvetkovic, V., & Andricevic, R. (2009). Flow and travel time statistics in highly heterogeneous porous media. Water Resources
Research, 45, W07402.

Guadagnini, A. (2003). Mean travel time of conservative solutes in randomly heterogeneous unbounded domains under mean uniform
flow. Water Resources Research, 39(3), 1050.

Haggerty, R, McKenna, S. A., & Meigs, L. C. (2000). On the late-time behavior of tracer test breakthrough curves. Water Resources Research,
36(12), 3467-3479.

Hansen, S. K., & Berkowitz, B. (2014). Interpretation and nonuniqueness of CTRW transition distributions: Insights from an alternative solute
transport formulation. Advances in Water Resources, 74, 54-63.

Haslauer, C. P, Guthke, P., Bardossy, A., & Sudicky, E. A. (2012). Effects of non-Gaussian copula-based hydraulic conductivity fields on mac-
rodispersion. Water Resources Research, 48, W07507.

Haslauer, C. P., Li, J., & Bardossy, A. (2010). Application of copulas in geostatistics. In geoENV VIl—Geostatistics for environmental applications
(pp. 395-404). Berlin, Germany: Springer.

Jankovic, 1., Fiori, A, & Dagan, G. (2003). Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison
with theoretical results. Water Resources Research, 39(9), 1270.

Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary condi-
tions. Chemical Engineering Science, 33(11), 1471-1480.

Levy, M., & Berkowitz, B. (2003). Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. Journal of Contami-
nant Hydrology, 64(3-4), 203-226.

Margolin, G., & Berkowitz, B. (2004). Continuous time random walks revisited: First passage time and spatial distributions. Physica A: Statisti-
cal Mechanics and Its Applications, 334(1-2), 46-66.

Moslehi, M., & de Barros, F. P. (2017). Uncertainty quantification of environmental performance metrics in heterogeneous aquifers with
long-range correlations. Journal of Contaminant Hydrology, 196, 21-29.

Neuman, S. P, & Zhang, Y.-K. (1990). A quasi-linear theory of non-Fickian and Fickian subsurface dispersion theoretical analysis with appli-
cation to isotropic media. Water Resources Research, 26(5), 887-902.

Pollock, D. W. (1988). Semianalytical computation of path lines for finite-difference models. Ground Water, 26(6), 743-750.

Rubin, S., Dror, |, & Berkowitz, B. (2012). Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils.
Journal of Contaminant Hydrology, 132, 28-36.

Rubin, Y. (2003). Applied stochastic hydrogeology. New York, NY: Oxford University Press.

Rubin, Y., & Ezzedine, S. (1997). The travel times of solutes at the Cape Cod Tracer Experiment: Data analysis, modeling, and structural
parameters inference. Water Resources Research, 33(7), 1537-1547.

Salandin, P., & Fiorotto, V. (1998). Solute transport in highly heterogeneous aquifers. Water Resources Research, 34(5), 949-961.

Schwartz, F. W. (1977). Macroscopic dispersion in porous media: The controlling factors. Water Resources Research, 13(4), 743-752.

Srzic, V., Cvetkovic, V., Andricevic, R, & Gotovac, H. (2013). Impact of aquifer heterogeneity structure and local-scale dispersion on solute
concentration uncertainty. Water Resources Research, 49, 3712-3728.

Trefry, M. G,, Ruan, F. P., & McLaughlin, D. (2003). Numerical simulations of preasymptotic transport in heterogeneous porous media:
Departures from the Gaussian limit. Water Resources Research, 39(3), 1063.

Werth, C. J,, Cirpka, O. A., & Grathwohl, P. (2006). Enhanced mixing and reaction through flow focusing in heterogeneous porous media.
Water Resources Research, 42, W12414.

Woodbury, A. D., & Rubin, Y. (2000). A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of
scale effects at the Cape Cod Experimental Site. Water Resources Research, 36(1), 159-171.

Zech, A, Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A,, ... Teutsch, G. (2015). Is unique scaling of aquifer macrodispersivity sup-
ported by field data? Water Resources Research, 51, 7662-7679.

HANSEN ET AL.

285



	l
	l
	l
	l
	l
	l
	l
	l
	l

