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Abstract Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In
reality, heterogeneous flow fields mean that both assumptions are idealizations. To understand their impact,
we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale
dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the
effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary
porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough
curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path
reversibility, we develop a continuous-time-random-walk-based interpretation framework which is
flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial
flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is
uninformative about velocity field heterogeneity. Our interpretation method determines a mapping
function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A
mathematical theory allowing this function to be directly ‘‘plugged into’’ an existing Laplace-domain
transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the
calibration are presented and applied to interpretation of data from a push-pull test performed in a
heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one
obtained using a million-node 3-D numerical model. Finally, we demonstrate analytically and numerically
how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.

1. Introduction

Field tracer testing is generally expensive to perform, and it is thus desirable to gain as much information as
possible by drilling as few wells as possible. This is a key motivation behind the use of so-called push-pull, or
single-well injection-extraction (SWIW) tracer tests, which utilize a single well rather than the multiple wells
needed for more traditional cross-well tracer tests. Other substantial benefits of the push-pull tests are that
typically their duration is much shorter than that of cross-well tests and tracer mass recovery tends to be
higher.

Push-pull tests are performed in the following general way: water spiked with tracer is initially pumped into
the well, and then subsequently the pumping direction is reversed, so that water is extracted from the well.
The tracer concentration in the extracted water is measured continuously during the extraction, generating
a breakthrough curve at the well. Interpretation of push-pull tracer tests is an inverse problem: governing
parameters are to be inferred from their impact on a resulting breakthrough curve.

Interpretation methodologies have been devised with an eye to identifying a variety of different parame-
ters, including porosity [Borowczyk et al., 1967], longitudinal dispersion coefficient [Mercado, 1966], single
first-order decay reaction constants [Snodgrass and Kitanidis, 1998; Haggerty et al., 1998; Schroth and Istok,
2006; Huang et al., 2010], and first-order decay chain reaction constants [Boisson et al., 2013].

Of closer relevance to the current study, the quantification of various mobile-immobile processes by a push-
pull methodology has been considered by a variety of authors. In particular, equilibrium sorption with linear
isotherms was considered by Schroth et al. [2000], and the aforementioned Huang et al. [2010] presented an
analytic solution incorporating first-order kinetic mass transfer alongside first-order decay. Haggerty et al.
[2001] considered mobile-immobile mass transfer inside the multirate mass transfer (MRMT) paradigm.
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Gouze et al. [2008b] also considered diffusion into secondary porosity, interpreting results from a push-pull
test by means of the continuous time random walk (CTRW). Other authors have considered mobile-
immobile behavior stemming from matrix diffusion from a push-pull test isolating a single fracture [Neret-
nieks, 2007; Doughty, 2010; Larsson et al., 2013].

For an inverse problem to be made well-posed, the output must be sensitive to the input parameter that
one would like to infer, and it must be possible to generate a bijective relationship between input and out-
put (because if multiple parameter values map to the same output, they are not uniquely identifiable based
on that output). Aspects of both matters have been considered by past authors. In particular, it has been
suggested that similarity of flow paths between the push phase and the subsequent pull phase may render
large-scale variability undetectable [Nordqvist and Gustafsson, 2002], although this does not appear to have
been quantified. Gouze et al. [2008a] makes this argument for layered formations, and Nordqvist and Gus-
tafsson [2004] indicates the same in single fractures with transmissivity varying in plan view. A related argu-
ment (based on the similarity of outbound and inbound times) leads Schroth et al. [2001] to argue that
equilibrium sorption in the absence of dispersion is not apt to be detected. Cassiani et al. [2005] also argues
that even when dispersion exists and is reliably characterized, it may not be possible to characterize retarda-
tion reliably. Regarding unique identifiability, a number of pairs of distinct processes that may not lead to
obviously distinct signals have been noted. For instance, Lessoff and Konikow [1997] considered matrix diffu-
sion and drift due to natural gradient and indicated that the two processes may lead to similar signals. Con-
necting the two issues, Tsang [1995] numerically compared push-pull tests featuring mobile-immobile
processes in the presence and absence of heterogeneous conductivity fields and found that the resulting
well breakthrough curves were relatively similar.

Working in a different vein, Kang et al. [2015] consider push-pull tests in highly heterogeneous (fractured)
media and aim to calibrate parameters describing path irreversibility using a CTRW-like Langevin formula-
tion. Their method is devised in the context of velocity fluctuations imposed heuristically on a purely radial
flow field and encoded by single-step correlations of the random walker transition times. This method
implicitly assumes that particle outbound and inbound paths are sufficiently different that the step transi-
tion times for the two times a particle is at a given distance from the well (on its outbound and inbound
journeys) are uncorrelated. This in turn implies a high degree of trajectory hysteresis due to pore-scale dis-
persion, as one might find in fractured media but not in more homogeneous porous media. Since the CTRW
is a general framework, there is actually no obstacle to their scheme being fitted to mobile-immobile behav-
ior in the case of path reversibility (as mobile-immobile mass transfer is a cause of different outbound and
inbound effective velocities). However, correlations between transition times would have no physical mean-
ing in this case, and one would simply be fitting a radial CTRW of the sort discussed by Dentz et al. [2015].
(We will show in section 4, however, that there is a more elegant approach in this specific case.) Kang et al.
[2015] also report empirical results supporting the idea that a measure of path reversibility is still observable
even in highly heterogeneous media.

Traditionally, well breakthrough curve interpretation implicitly assumes the validity of the radial-coordinate
advection-dispersion equation (ADE). Interpretation proceeds either by means of an analytic transport solu-
tion in radial coordinates [e.g., Gelhar and Collins, 1971; Haggerty et al., 2001], or by numerical discretization
based on the radial ADE [e.g., Lessoff and Konikow, 1997]. Exceptions include techniques for calibrating first-
order reaction rates [e.g., Haggerty et al., 1998], which concern the concentration ratio of two coinjected at
any given time, rather than breakthrough curve shape. All interpretation methods that we are aware of
which are based on breakthrough curve shape implicitly assume the validity of the radial ADE, with the par-
tial exception of Kang et al. [2015], which still is rooted in a Langevin form of the radial ADE.

At the same time, it is well known that tracer transport in aquifers may not be well described by the ADE
and its analogs [Berkowitz et al., 2006]. This may have a number of causes. In particular, in a heterogeneous
conductivity or transmissivity field, purely radial flow is not to be expected [Nordqvist and Gustafsson, 2004;
Lessoff and Konikow, 1997]. Given flow quasi-reversibility, invalid simplifying assumptions about the flow
field may prove harmless. However, to our knowledge this has not previously been established, either theo-
retically or numerically. Consequently, we are motivated to develop a more general interpretive
methodology.

In light of the above, our motivations in this work are several:
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1. To characterize the information content of the push-pull test, both with regard to its ability to uniquely
quantify mobile-immobile transport and with regard to general transport features which are invisible to
it.

2. To develop a conceptual framework that is flow-field-agnostic, which avoids embedding known-invalid
assumptions and which can be used to decide questions of parameter identifiability analytically.

3. To develop a simple, practical method for quantifying general mobile-immobile transport behavior (e.g.,
kinetic sorption, transport in dual porosity media, and rock matrix diffusion) based on push-pull test
breakthrough curves, which can be used easily for predictive modeling, and to illustrate its use.

To this end, we develop a new interpretive methodology that does away with radial continuum approaches,
whether ADE or CTRW-based, to interpretation and instead considers particle transition times between adja-
cent isochrones for Darcy-scale flow: essentially modeling transport as an abstract, discrete-site 1-D CTRW.
This perspective allows us to make statements about what may be invisible (most commonly, the heteroge-
neous hydraulic conductivity field, or K-field), and what is certainly visible (to wit, mobile-immobile behav-
ior). It is shown how to quantify the latter, and a simple subordination technique is presented for
modification of an existing model which captures only heterogeneous advection in order to add the
mobile-immobile trapping behavior characterized by the push-pull test.

In section 2, we consider general mathematical modeling of mobile-immobile mass transfer processes,
including those with a heavy-tailed distribution of single sojourn times in the immobile state. In section 3,
we evaluate the assumption of particle path reversibility (i.e., the notion that the outbound and inbound
paths traced by any individual particle are the same, which is distinct from Darcy flow reversibility on
account of hydrodynamic dispersion) via a numerical parametric study. In section 4, we introduce a new,
purely temporal, conceptual approach for formulating push-pull interpretation problems, valid as long as
we may assume path reversibility. In section 5 we formulate and demonstrate numerical algorithms based
on the new conceptual approach, establishing mathematically that push-pull tests are not sensitive to cap-
ture rate. In section 6, we demonstrate the new conceptual and numerical approaches on data collected at
the MADE site and show comparable performance of our approach to a more elaborate interpretation tech-
nique. In section 7, we summarize our key findings.

2. Mathematical Treatment of Mobile-Immobile Processes

Many subsurface solute transport scenarios are naturally modeled using two spatially coextensive domains,
each having its own local concentration, such that those concentrations may be in physical or chemical dis-
equilibrium (i.e., there is a net flux between them at certain locations). So-called mobile-immobile solute
transport—that of solute which advects only when it is in one, ‘‘mobile,’’ state (or domain) but which can
also sometimes be trapped in an ‘‘immobile’’ state from which it is eventually released—is naturally mod-
eled in this way. Mobile-immobile transport models may closely mimic physics, for instance when modeling
adsorption, or may be an upscaled approximation, for instance when modeling diffusion into secondary
porosity. In either case, define mobile concentration, cðx; tÞ ½M L23�, and immobile concentration,
cimðx; tÞ ½M L23�, where x ½L� and t ½T� are the spatial and temporal coordinates, respectively. Then mobile-
immobile behavior may be captured by the following set of equations:

@c
@t
ðx; tÞ1 @cim

@t
ðx; tÞ5F cf gðx; tÞ

@cim

@t
ðx; tÞ5G c; cimf gðx; tÞ;

(1)

where F is a linear differential operator representing some combination of advection, dispersion, and decay,
and G is an arbitrary operator. In the common case of first-order kinetic mass transfer [Fetter, 1999, p. 133],

G c; cimf g � kc2lcim: (2)

Here k ½T21� represents the probability per unit time that a mobile particle will become immobile, and
l ½T21� represents the probability per unit time that an immobile particle will become mobile. This
implies the following exponential probability distributions for the length of single sojourns in both the
mobile state, wmðtÞ ½T21�, and the immobile state, wimðtÞ ½T21�:
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wmðtÞ5ke2kt; (3)

wimðtÞ5le2lt: (4)

However, in some cases, a nonexponential distribution is applicable for single sorption times [Drazer et al.,
2000; Haggerty and Gorelick, 1995]. In these cases, an alternative expression for G (which we call G�), previ-
ously employed by Margolin et al. [2003] can be used

G� cf g � kc2k
ðt

0
wimðsÞcðx; t2sÞds: (5)

As in (2), k is a spatially homogeneous probability per unit time that a mobile particle will become immo-
bile, and wmðtÞ remains as in (3). However, here, the form of wmðtÞ is defined to be arbitrary. When wimðtÞ is
defined as in (4) then G� collapses to G, so this is a pure generalization of the standard form (2). Substituting
G� as defined in (5) for G in (1) leads to the integrodifferential equation

@c
@t
ðx; tÞ5F cf gðx; tÞ2kcðx; tÞ1k

ðt

0
wimðsÞcðx; t2sÞds: (6)

To model transport predictively, it is necessary to characterize the mobile-immobile trapping behavior via k
and wim, as well as F, the transport operator that would apply in the absence of any mobile-immobile pro-
cesses. We will see below that the nature of F is essentially invisible to push-pull tracer tests. However, there
is a positive perspective on this: it means push-pull tracer tests are solidly positioned to isolate and to char-
acterize mobile-immobile processes because the well breakthrough data may not be influenced by flow-
field heterogeneity.

A potentially useful way to understand the results herein is in the framework of anomalous, or non-Fickian,
transport. For our purposes, we distinguish two distinct types of anomalous transport: diffusion-driven and
advection-driven. Diffusion-driven anomaly is caused by some sort of trapping process where the capture
rate and capture time are unrelated to the advection velocity; capture is ultimately driven by molecular dif-
fusion. Assuming a spatial homogeneity of trapping sites, the mobile-immobile processes we seek to char-
acterize—kinetic sorption, matrix diffusion, diffusion into secondary porosity—all fall into this category. By
contrast, advection-driven anomaly refers to highly asymmetric breakthrough curves caused by a distribu-
tion of velocities among streamlines, such that different particles make different amounts of progress in a
given time. Advection-driven anomaly is related to the advection velocity, and may also, under flow quasi-
reversibility go undetected by a push-pull test.

3. Can We Assume Path Reversibility?

Consider the velocity field generated by a point injection in a confined aquifer. By linearity of the ground-
water flow equation, scaling the injection rate by some fixed multiple, m, scales the velocities everywhere
by m, without changing their orientation. This shows that regardless of the hydraulic conductivity field, if
there are no dispersive processes and the aquifer responds instantaneously to head changes, then all par-
ticles released at a given instant will reconvene at the well simultaneously during the pull phase. This
means, mathematically, that the operator F in (6) is invisible. As mentioned in the introduction, tracer path
reversal has been remarked upon by previous authors [e.g., Nordqvist and Gustafsson, 2002], and the last-in-
first-out assumption that it entails underpins all push-pull interpretation theory of which we are aware. Nev-
ertheless, it does not appear to have been systematically investigated in light of hydrodynamic dispersion.
Consequently, we first examine path reversal before proceeding to further theoretical development that
depends on it.

3.1. Assessing the Path Reversal Assumption Under Nonideal Conditions
We performed a computational parametric study to quantify the impact of three natural processes which
might combine to interfere with path reversibility: ambient background flow, K-field heterogeneity, and
local-scale dispersion. The parametric study involved 100 realizations of 50 m by 50 m, multi-Gaussian, iso-
tropic 2-D log hydraulic conductivity fields were generated, with constant conductivities assigned to each
cell a 100 by 100 grid. The fields were generated in MATLAB, using Fourier series methods. All realizations
assumed an exponential semivariogram with a correlation length of 4 m, and a geometric mean hydraulic
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conductivity of 1024 m s21. The realizations were divided into batches of 25, each batch featuring a differ-
ent value of r2

ln K , respectively 0.5, 1.0, 1.5, and 2.0.

An example hydraulic conductivity field is shown in Figure 1. For each conductivity field, we ran two simula-
tions in PFLOTRAN [Lichtner et al., 2015]. For the first (quasi-radial) simulation, we imposed a constant mass
injection rate, Qin51 kg s21, at the center, and zero head at all points on the outer boundary. For the sec-
ond (quasi-linear) simulation, we imposed no-flow boundary conditions on the north and south faces (i.e.,
at y 5 25 m and y 5 75 m), and constant head values, higher at the west edge (x 5 25 m), and lower at the
east (x 5 75 m). In both cases, steady-state velocity fields were computed for each (one vector for each cell
on the 100 by 100 grid). These velocity fields were used to simulate push-pull tests under a variety of condi-
tions. For each realization, nine push-pull simulations were performed, exploring each combination of aver-
age ambient drift velocities, va 5 of 0, 0.05, and 0.1 m d21, and longitudinal local-scale dispersivities,
al, 5 0.01, 0.055, and 0.1 m. In all cases, transverse local-scale dispersivity, at5al=10. The parameter ranges

Figure 1. (top) Heat map showing log 10ðKÞ for a single realization from the parametric study, with r2
ln K 51:5. (bottom) Cell-center velocities calculated by PFLOTRAN using this realiza-

tion (vectors point in direction of flow and their length is proportional to speed). Flow maps are shown for mass injection at the center (left), and west-to-east ambient flow (right). All
diagrams are shown in map view.
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were chosen so as to be in plausible ranges for a sandy aquifer. The characteristic pore-scale dispersivities
were chosen based on the reported ranges in Schulze-Makuch [2005] and drift velocity was selected to inter-
polate between zero and the relatively rapid flow observed at the Borden aquifer [Mackay et al., 1986]. Parti-
cle tracking was also run with no drift and no pore-scale dispersivity, which confirmed path reversal and
instantaneous reconvention of particles in the case of pure advection in the heterogeneous flow field.

The particle tracking code was written in the Julia language, and employed constant, small time steps of
duration 0.01 h. For each particle, at each time step, the velocity field was interpolated based on the par-
ticle’s starting location. If the particle was presently mobile at the start of the time step, it advected along its
local streamline for the entire duration of the time step, and then underwent a small random Fickian disper-
sive motion determined by al, at, and the streamline velocity. If the particle was immobile at the start of the
time step, it was not moved. All particles were injected in the mobile state. If mobile-immobile mass transfer
was turned on, at time 0, and each time the particle made a mobile/immobile state transition, the time of
the next state transition was selected by making a draw from wm or wim, as appropriate. Discussion of other
approaches to particle tracking with flow field heterogeneity and potential mobile-immobile mass transfer
can be found in Michalak and Kitanidis [2000] and Salamon et al. [2006] and references therein. The velocity
fields were used in the following way during the push-pull simulations on each realization: during the push
phase, the velocity fields from the quasi-radial PFLOTRAN simulation were used directly. During the pull
phase, these were scaled by a multiple of 21. Ambient drift was simulated for each realization by scaling
the velocity vectors of the quasi-linear case so that the mean west-to-east velocity was as desired. Using the
principle of superposition, these vectors were added to the vectors obtained from the quasi-linear simula-
tion, and this sum defined the cell-center velocity for each cell.

Particle tracking proceeded by introducing 5000 particles in a ring of diameter 15 cm around the injection
location at the center of the domain, and tracking them during a push phase of 40 h, and then through a
200 h pull phase, or until all particles had reconvened at the well. No processes other than local-scale dis-
persion and advection affected the particles. Since tracer from the tests was found to only interrogate the
area immediately surrounding the well (e.g., see Figure 6), the no-flow boundary conditions imposed at the
north and south edges of the domain for the quasi-linear simulations were not considered to be relevant.

For each of the nine particle tracking simulations on each of the 100 realizations, the variance and the
moment coefficient of skewness (MCS) of the breakthrough curves were computed. The separate averages
of the variance and MCS were taken over the 25 realizations in each batch, for each of the nine combina-
tions of drift velocity and local-scale dispersivity. Contour plots of these quantities are shown in Figure 2.

Under perfect path reversibility, as discussed, all the particles which departed the well at the same instant
would reconvene at the same instant. This is to say, the well breakthrough curve under such conditions
would be a translated Dirac delta function, dðt280 hÞ, whose central moments are all zero. Based on the
fact that the variance is in some places significantly positive (with a standard deviation greater than 10 h
found, even in the no-drift case, compared to a mean breakthrough time of 80 h) we see that the path
reversibility assumption is only an approximation for push-pull tests in real media. Detectable scattering
can emerge from the interaction of local-scale dispersion and flow-field heterogeneity, even in the absence
of ambient drift. Fortunately, pore-scale dispersivity can be estimated form core samples, and ambient drift
can be estimated from point dilution tests. Thus, it is possible for practitioners to use our results to estimate
a degree of likely scattering before a push-pull test is performed.

3.2. Assessing Scattering Due to Mobile-Immobile Mass Transfer
A second study was performed which followed the same methodology, using a single K-field realization.
This study involved no drift or pore-scale dispersivity (and thus featured total path reversal, with all particles
converging at the same instant in the absence of mobile-immobile trapping behavior). It considered the
effect of mobile-immobile trapping behavior alone on particle scattering, with a goal of identifying regions
of parameter space in which (a) scattering due to mobile-immobile mass transfer dominates the other sour-
ces identified above and (b) non-Fickian behavior (i.e., heavy-tailed breakthrough curves that cannot be
explained by a constant dispersion obeying Fick’s law) is apparent. For simplicity of parameterization, we
restricted our study to first-order kinetic mass transfer (2) and did not explicitly consider other forms of wim.
This appears to be conservative, as it is reasonable to believe that power-law wim will generate a stronger
signal than exponential wim. A range of possible values of k and l, the probabilities per unit time that
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mobile and immobile particles will respectively become immobile and mobile, were considered. Bounds
were placed on the parameter space based on the fact that particles should be expected to experience mul-
tiple immobilization-remobilization cycles during the test (so k and l cannot be too small), and the fact
that, per Hansen [2015], Fickian behavior is expected for t > 70=min ðk;lÞ (so k and l cannot be too large).

Contour plots of the variance and MCS of the breakthrough curves as a function of k and l were computed
and are shown in Figure 3. In order for the assumption of path reversibility to be harmless, it must be true
that scattering (for which breakthrough time variance is a proxy) due to hydrodynamic processes is much
weaker than scattering due to mass transfer. Furthermore, if we are interested in making inferences about

Figure 2. Contour plots quantifying scattering due to interplay of ambient flow, local-scale dispersion, and heterogeneity. Each plot shows a relationship between local-scale dispersivity
and K-field heterogeneity. Each row corresponds to a different ambient flow velocity. The left column displays variance and the right column displays moment coefficient of skewness.
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the mobile-immobile mass transfer by interpreting the heavy tails of the breakthrough curve, the skewness
(of which the MCS and variance are together a proxy) due to hydrodynamic processes must be much
weaker than the skewness due to mass transfer. It is clear from examining the variance and MCS at different
points in va-al- r2

ln K space in Figure 2, in parallel with the variance and MCS at different points in k-l space
in Figure 3, that this is not generally true.

However, it is apparent from both plots in Figure 3 that the most likely region for identifying a strong and
non-Fickian signal in the data and being able to disregard imperfect path reversal lies in the region
l � 0:4; k � 1. In this region, we see that the variance and third central moment of breakthrough due to
mobile-immobile behavior are in almost all cases an order of magnitude or more larger than that due to
the interaction of ambient drift, local-scale dispersion, and heterogeneity for all the combinations of param-
eters considered, rendering the assumption of path reversal reasonable. We also note that, in this region, k
has a limited impact on the low-order spatial moments of the breakthrough curves, and l has a compara-
tively much larger impact. (We will later show mathematically that as long as k21 is much shorter than the
timescale of the test, push-pull tests actually contain negligible information about k and that this indiffer-
ence is not limited to certain spatial moments or to specific parameter values chosen.)

3.3. Visualizing Simultaneous Action of Mobile-Immobile Mass Transfer and Local-Scale Dispersion
The analysis immediately preceding has suggested that, at least in many circumstances, scattering due to
hydrodynamic processes will be negligible relative to those of mobile-immobile mass transfer, and it may
be reasonable to assume that mobile-immobile mass transfer is the only operative process when interpret-
ing push-pull tests. The hydrodynamic and mobile-immobile mass transfer causes of scattering factors were
analyzed separately, respectively in sections 3.1 and 3.2. This is a conservative assumption, since when mass
is immobile, it will not undergo any hydrodynamic scattering—however, it may be useful to visualize their
simultaneous effect. To that end, we presently introduce what we shall term our canonical example: a sys-
tem with parameters that might be realistic for a push-pull test in a sandy aquifer, for which it would be rea-
sonable to assume path reversal and attempt to quantify mobile-immobile mass transfer. We shall return to
this example repeatedly over the next sections, altering specific features to illustrate particular concepts.
Note that unlike the preceding parametric study, we do not presume to rest general claims about push-pull
behavior on this single example. Rather, we seek to demonstrate the theoretical claims that we make about
the information content of push-pull tests and the numerical methods we develop, and to visualize
behavior.

The canonical example has the following attributes:

1. Its domain is a heterogeneous hydraulic conductivity field (varying only in map view, defined by an iso-
tropic Gaussian semivariogram with correlation length of 2 m, geometric mean hydraulic conductivity
1024 m s21, and r2

ln K 52) on a domain 50 m square in map view and 10 m deep.

Figure 3. Contour plots quantifying scattering due to mobile-immobile mass transfer, as a function of k and l, as quantified by breakthrough curve variance (left) and moment coeffi-
cient of skewness (right).
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2. A push-pull test is simulated in this
conductivity field, assuming the
aquifer is confined and there is a ful-
ly-penetrating well at the center of
the map. This is done by solving
the groundwater flow equation in
PFLOTRAN, assuming negligible stor-
ativity (i.e., instantaneous response to
changes in head at the well). The
Darcy velocity field during the push
(injection) phase is shown in Figure 4.
Identical rates of injection, Qin ½M T21�,
and extraction, Qex ½M T21� are used,
with Qin5Qex5 1 kg s21 (note that
Q here represents a mass flow rate).

3. There is no ambient flow. (Having
characterized its effect above in the
parametric study, we will follow
the example of all other analyses
of push-pull tests we are aware
of in the literature and assume it
is zero in the remainder of this
document.)

4. The push phase is simulated for
40 h, after which the pull (extraction) phase immediately commences and runs for another 160 h.

5. Moderate local-scale dispersion with al51 cm and at50:1 cm is taken to be operative.
6. First-order kinetic trapping is operative, and in a region of parameter space which will lead to observable

tailing. We assume wm exponential, with k510 h21, and wim exponential, with l5 1
3 h21.

To illustrate the combined effect of mobile immobile mass transfer, local-scale dispersion, and K-field het-
erogeneity, we compare in Figure 5 the breakthrough curve from the canonical example (which features all
of these), and the breakthrough curve that would be generated by the canonical example, except with zero
local-scale dispersion. The curves in this figure were each generated by tracking 105 particles and applying
kernel density estimation. The comparatively mild effect of pore-scale dispersion, particularly in the tail
region, even on this comparatively heterogeneous conductivity field, is notable.

Since local-scale dispersion and K-field
heterogeneity affect the well break-
through curve by inducing flow-line hys-
teresis (imperfect path reversibility),
another instructive way to view the
effect of these processes as they interact
with mobile-immobile mass transfer is
to examine the pathlines followed by
distinct particles as they are tracked. In
Figure 6, we show four scenarios: that of
the canonical example, along with every
other combination of local-scale disper-
sion and mobile-immobile mass transfer
being turned on and off. The bottom
two figures correspond to the two sce-
narios whose breakthrough curves are
shown in Figure 5. Just how minor the
hysteresis induced by pore-scale disper-
sion is may be surprising. In addition,

Figure 4. Cell-center velocity field computed by PFLOTRAN during push phase for
the canonical example. Diagram is in map view; vectors point in direction of flow
and their length is proportional to speed.

Figure 5. Comparison of breakthrough curves at well for push-pull test in hetero-
geneous media, with mobile-immobile (kinetic sorption) behavior, with and with-
out pore-scale dispersion. The effect of pore-scale dispersion is seen in the
difference between these curves.
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with strong trapping processes in effect, it is notable that the test interrogated only a cylinder with diameter of
approximately 2 m, centered around the well. This illustrates that push-pull tests are plainly sensitive to local
variabilities in immobilization properties, while being comparatively insensitive to flow-field heterogeneity.

4. Travel Time Analysis

4.1. Isochrones of the Pumping-Induced Flow Field
Consider the equal-time contours, or isochrones, of the flow field during the push phase. These are lines (or
in 3-D systems, surfaces) which are reached in equal time by pure-advection along Darcy-scale streamlines.
In a homogeneous domain, the isochrones will be perfect circles centered at the well (although not evenly
spaced, as radial velocity decreases with distance from the well). In a heterogeneous domain, these will be
irregularly-shaped, and be determined by the underlying hydraulic conductivity field. Figure 7 shows iso-
chrones for both sorts of scenarios (the irregular isochrones correspond to the canonical example). If there
were no trapping or other dispersive processes, a slug of solute introduced instantaneously would be

Figure 6. Outbound and inbound particle paths for 40 particles shown in map view over for variations on the canonical example. The top row features no mobile-immobile mass
transfer, and the bottom row features mobile-immobile mass transfer as described in the canonical example (note different scales in each row). The left column features no local-scale
dispersion, and the right column features local-scale dispersion as described in the canonical example. For additional clarity, the bottom left plot represents the exact conditions of the
canonical example.
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uniformly distributed along a single isochrone after any given time, by definition. If the pumping rate were
maintained but the pumping direction reversed then all of the tracer would arrive back at the well after the
same amount of time over which pumping into the well took place (true for both sets of contours seen in
Figure 7). Variability is only detectable to the extent that it causes solute to take an amount of time to com-
plete the outbound trip from isochrone n to isochrone n 1 1 that is different from the time taken to make
the inbound trip from isochrone n 1 1 back to isochrone n. This precludes the detection of flow field hetero-
geneity, except to the extent that the transport is hysteretic—with solute returning by a different path than
that which it took on its outbound journey. Such insensitivity stands in striking contrast to the findings of
Pedretti et al. [2013] regarding radially convergent tracer tests, namely that the primary cause of heavy-
tailed breakthrough was flow field heterogeneity. To the extent that the effect of flow field heterogeneity
may be neglected, and in the rest of the paper we shall assume it may be, push-pull tests isolate the tempo-
ral trapping effects of mobile-immobile processes, and are well positioned to quantify them. We demon-
strate how this may be done below.

4.2. Isochrone First-Passage Times as Measures of Mobile-Immobile Mass Transfer
In contrast to classical push-pull analyses, which are continuum-based and rely on the ADE, our analysis
employs the more general CTRW framework, which is capable of capturing behavior encoded by the ADE,
as well as other behavior that it cannot capture. We employ CTRW ideas to conceptually discretize continu-
ous solute motion as sequential transitions between the Darcy-scale isochrones introduced above, and then
apply subordination theory to compute the CTRW transition distributions from the underlying physics.

The basic idea is to imagine an infinite set of isochrones with unit (temporal) spacing. An essential assump-
tion is that whatever trapping process is driving the mobile-immobile behavior is spatially invariant, and
everywhere is defined by the same capture rate per unit time, k, and the same wim. We recognize that this
may be an idealization, as some systems may feature spatially-variable mass transfer properties whose scale
of variability is large relative to the isochrone spacing, and these may in fact be correlated positively or neg-
atively to the hydraulic conductivity field [Allen-King et al., 2006]. Since a particle spends, by definition, unit
time free while passing between isochrones, the probability distribution for transition between each succes-
sive pair of isochrones will be identical. The fundamental idea here is that individual CTRW transitions are
defined as the space-time interval between first arrival at successive surfaces (with each adjacent pair having
the same interarrival statistics). This is essentially the renewal plane CTRW (RP-CTRW) theory introduced pre-
viously by Hansen and Berkowitz [2014]. Here, however, the renewal ‘‘planes’’ that cause a transition to be
registered are replaced by arbitrarily shaped successive isochrone surfaces. We thus transform a transport
problem in a complex 2-D (or 3-D) flow field into a 1-D CTRW problem. Following the approach introduced
by Benson and Meerschaert [2009], and also employed by Dentz et al. [2015], this distribution may be

Figure 7. Isochrones displayed (in map view) at 5 h intervals from the beginning of the push phase. (left) Isochrones computed for the
canonical example (with no local-scale dispersion). (right) Isochrones in homogeneous media corresponding to the same pumping rate
and geometric mean conductivity.
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computed by summing the product of the (Poisson-distributed) likelihood of k captures in unit time and
the k-fold auto-convolution of wim, for all k

f1ðtÞ5
X1
k50

e2kkk

k!
ðwimÞ

�kðt21Þ: (7)

We can imagine that f1ðtÞ ½T21� represents a probabilistic mapping between a unit of time spent mobile
(we will call this operational time) and an amount of total time (we will call this clock time). If k 5 0, then
f1ðtÞ5dðt21Þ, and the operational and clock times are the same. More formally, we define the fðt; uÞ ½T21�
to be the distribution function mapping between operational time, u, and clock time, t. f1ðtÞ and fðt; 1Þ are
equivalent. Readers may note that f1ðtÞ is conceptually analogous to the wðtÞ used in the RP-CTRW concep-
tualization. The change of notation is to avoid confusion with wm and wim used elsewhere in this paper.

Because the interarrival times for two pairs of isochrones are independent, it follows that fðt; 2Þ5fðt; 1Þ � fðt; 1Þ,
where � denotes convolution. Define ~fðs; uÞ � Lffðt; uÞg, denoting the t ! s Laplace transform of fðt; uÞ. (We
will use an overbar tilde to denote t ! s Laplace transformation.) In Laplace space, ~fðs; 2Þ5½ ~f1ðsÞ�2. We can see
that this relationship extends to higher and fractional powers as well, and that in general,

~fðs; uÞ5½ ~f1ðsÞ�u: (8)

Given that fðt; uÞ represents the mapping from operational time to clock time, the following relation may
be used to convert the particle arrival rate at location x in operational time, Ropðx; uÞ ½T21�, to the particle
arrival rate at x in clock time, Rclðx; tÞ ½T21�, where the symbol R has the same interpretation as in other
CTRW literature [e.g., Berkowitz et al., 2006]:

Rclðx; tÞ5
ðt

0
fðt; uÞRopðx; uÞdu: (9)

The validity of this relationship follows directly from viewing fðt; uÞ as the pdf for clock time, t, conditional
on operational time, u, and noting that Rop and Rcl are proportional to first-passage time (operational and
clock, respectively) pdfs at x. Thus, (9) is simply a marginalization integral for a conditional probability. By
use of (8) and (9), we will show both that f1ðtÞ completely determines the breakthrough curve at the well
(and is thus plausibly determinable via inverse analysis) and that it contains exactly the information needed
to add mobile-immobile behavior into a transport model that only captures advective-dispersive behavior.

4.3. f1ðtÞ Determines the Push-Pull Breakthrough Curve
Imagine an isochronal coordinate system, written in terms of ‘‘spatial’’ coordinate n ½T�, instead of x, where
this represents all locations that are accessible by a purely advective streamline-follower in time n during
the push phase. (This is a continuum extension of the discrete isochrone picture illustrated in Figure 7.) This
means that the n-coordinate of a particle at the end of the push phase represents the amount of time it
was operational during that phase. Then by definition, Ropðn; tÞ5dðn2tÞ. Using (9) with n replacing x, it fol-
lows that at the end of the push phase (time Tpush), we have

Rclðn; TpushÞ5fðTpush; nÞ: (10)

Breakthrough at the well will occur as soon as the particles have spent exactly as much time operational
during the pull phase as they did during the push phase. Let bðtÞ ½T21� be the probability distribution for
the time taken by a particle between its initial departure from the well and its return. It follows that

bðtÞ5
ð1

0
fðTpush; nÞfðt2Tpush; nÞdn t � Tpush: (11)

By (8), the right-hand side is entirely determined by f1ðtÞ, and by Tpush, which is known. The flux concentra-
tion, cf ½M L23�, at the well during the pull phase can then immediately be determined by taking the convo-
lution of the flux concentration during the push phase with b

cf ð0; tÞ5
ðTpush

0
bðt2sÞcf ð0; sÞds t � Tpush: (12)

Thus, we see that f1ðtÞ contains all the information about the subsurface that affects the breakthrough
curve at the well.
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4.4. f1ðtÞ Is Sufficient to Incorporate Mobile-Immobile Behavior Into a Transport Model
We assume that Ropðx; uÞ has been previously determined for the relevant flow field, excluding mobile-
immobile behavior. It will generally incorporate advection-driven anomaly that is invisible to a push-pull
methodology, but in rare cases may be determined by the ADE. Noting that fðt; uÞ50 for u> t, we can
change the upper limit of integration from t to1, and then Laplace transform t ! s

~Rclðx; sÞ5
ð1

0

~fðs; uÞRopðx; uÞdu: (13)

We then apply (8) to show that

~Rclðx; sÞ5
ð1

0
½ ~f1ðsÞ�uRopðx; uÞdu: (14)

According to the analysis in Benson and Meerschaert [2009, equation (6)], if we have a mobile-immobile sys-
tem in which the waiting time distribution for a single sojourn in the mobile phase, wmðtÞ, is exponential
with parameter k (i.e., wmðtÞ5ke2kt), and the waiting time distribution for a single sojourn in the immobile
phase, wimðtÞ, is general, then we may write

½ ~f1ðsÞ�u5e2uðs1k½12~w imðsÞ�Þ: (15)

Making the substitution q � s1k½12~w imðsÞ� and substituting (15) into (14), we arrive at

~Rclðx; sÞ5
ð1

0
e2quRopðx; uÞdu; (16)

where by definition, the right-hand side is just the u! q Laplace transform of Ropðx; uÞ, which we shall
denote R̂opðx; qÞ. Then it follows from our definition of q that

~Rclðx; sÞ5R̂opðx; s1k½12~w imðsÞ�Þ5R̂opðx;2lnðf1ðsÞÞÞ: (17)

This is an especially opportune relationship, since if one works analytically in the CTRW paradigm to mod-
el the anomaly due to heterogeneous advection, then R̂opðx; qÞ will usually, in any case, be obtained in
the Laplace domain, and need numerical inversion. (Particle arrival rates can be translated into resident
concentrations using methods outlined in Berkowitz et al. [2006, Appendix B].) In this case, adding addi-
tional anomaly due to mobile-immobile mass transfer (i.e., moving to clock time) to the anomaly owing
to heterogeneous advection (modeled in operational time) does not add any complexity to the work
flow.

An interesting aside at this point is how the analysis of mobile-immobile immobile mass transfer has illus-
trated the connections between the MRMT framework, as exemplified by (6), the RP-CTRW framework (f1

conceived as an isochrone transition time), and the subordination theory (f1 as defined in (7)).

4.5. Numerical Demonstration of Laplace-Domain f1 Substitution
To demonstrate our technique, we return to the canonical example. We use the heterogeneous conductivity
field and mass transfer parameters used there, but alter the boundary conditions defining the flow field. In
particular, we simulate steady-state flow in this domain under strong advection using PFLOTRAN, applying
a left-to-right head drop of 10.4 m and applying no-flow boundaries on the other two faces. (The large gra-
dient increases the speed of the particle tracking algorithm when sorption is turned on, and is immaterial
for the purposes of our demonstration.) The resulting flow field is shown in Figure 8. In this flow field, we
perform two particle tracking simulations, both beginning with particles initially uniformly distributed along
the left edge of the domain. The demonstration procedure is this:

1. 50,000 particles are released, and passively follow the flow lines. The time of arrival at the right edge of
the domain is recorded for each particle and a histogram is produced, representing the downgradient
breakthrough curve, RopðtÞ. This is shown in the top plot of Figure 9.

2. 10,000 particles are released, and follow the flow lines, but subject to periodic trapping and release gov-
erned by the same k and l that were used in the canonical example. A second histogram is produced,
representing another particle breakthrough curve, RclðtÞ.
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3. The Laplace transform of the break-
through curve generated in point 1
is numerically computed, the substi-
tution (17) is applied (with f1 relat-
ed to k and l via (7), and the
Laplace transform is numerically
inverted to generate a prediction of
the breakthrough curve generated
in point 2.

The breakthrough curves generated in
steps 2 and 3, respectively, are shown
on the bottom plot of Figure 9. The
high degree of coherence between
these two curves demonstrates the
validity of the relation summarized
in (17).

5. Monte Carlo Parameter
Identification and Further
Informational Limitations of
Push-Pull Tests

In light of the above analysis, we are
motivated to determine f1ðtÞ from the

push-pull breakthrough curve, so that we may apply it to predict transport under linear flow in the same
domain. Such breakthrough curve interpretation is an inverse problem. The unknown f1 (along with
known parameters, such as pumping rate and duration) determines completely the observed break-
through curve at the well. It is natural to attempt invert this by a minimum-residual technique: knowing
the well breakthrough curve, we seek to determine f1ðtÞ by selecting definitions at random and choosing
the one that best recreates the breakthrough curve. In developing algorithms for this purpose, we will
come to see another feature that is largely or totally invisible to push-pull tests beyond those identified in
section 3.

5.1. Direct Monte Carlo Solution for f1

The following is a straightforward, flow-field-agnostic approach to the problem of identifying f1, based on
subordination ideas (for simplicity, we assume that Qin and Qex are the same):

1. Generate initial guess for f1.
2. For each of a number of iterations:

a. For each of a large number of particles:
i. Initialize two variables, Tcl50, and Top50, reflecting, respectively, the particle’s clock and opera-

tional time.
ii. For the push phase: while Tcl is less than the end time of the push phase, use a pseudo-random

number generator to repeatedly generate samples from the distribution f1. For each sample, Z,
increment Tcl50, and Top50 by Z.

iii. For the pull phase: while Top > 0 repeatedly generate samples from the distribution f1. Increment
Tcl by Z, and decrement Top by Z.

iv. Record the final Tcl corresponding to Top50 (i.e., breakthrough back at the well).
b. Generate a histogram from the final Tcl for each particle.
c. Compute the L2 norm of the difference between the histogram generated and the breakthrough

curve at the well.
d. If this is the smallest L2 norm yet seen, set ‘‘variable’’ fbest

1 5f1.
3. Return fbest

1 .

Figure 8. Map of flow induced by a left-to-right hydraulic head drop of 0.2 m,
imposed on the same heterogeneous conductivity field shown in Figure 4.
No-flow boundary conditions were imposed at the top and bottom of the
domain.
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5.2. Indirect Monte Carlo Solution for f1 by Means of k and wim

We might instead attempt to solve directly for k and wim, the determinants of f1 per (7), and of gen-
eral transport behavior per (6 or 17). The following algorithm does this, also allowing for a potential
pause between push and pull phases, and differential pumping rates during the push and pull
phases.

1. Generate initial guesses for k (defining the exponential wm) and wim.
2. For each of a number of iterations:

a. For each of a large number of particles:
i. Initialize two variables, Tcl50, and Top50, reflecting, respectively, the clock and operational times

of the particle.
ii. While Tcl is less than the end time of the push phase:

A. Draw a sample from the distribution wm. Add this to both Tcl, and Top.
B. Skip directly to next phase (pause or pull) if Tcl is greater than the length of the push phase.
C. Draw a sample from the distribution wim. Add this to Tcl alone.

iii. While Tcl is less than the end time of the pause phase (if any):
A. Draw a sample from the distribution wm. Add this to both Tcl alone.
B. Skip to pull phase if Tcl is greater than the end time of the pause phase.
C. Draw a sample from the distribution wim. Add this to Tcl.

iv. While Top > 0 (pull phase):
A. Draw a sample from the distribution wm. Add this to Tcl, and subtract* this from Top.
B. End pull phase immediately if Top � 0.
C. Draw a sample from the distribution wim. Add this to Tcl.

v. Record the final Tcl corresponding to Top50 (i.e., breakthrough back at the well).
b. Generate a histogram from the final Tcl for each particle.
c. Compute the L2 norm of the difference between the histogram generated and the breakthrough

curve at the well.
d. If this is the smallest L2 norm yet seen, set ‘‘variables’’ kbest5k and wbest

im 5wim.
3. Return kbest and wbest

im .

*If Qin 6¼ Qex during the pull phase, sample t � wm as before but instead subtract t Qex
Qin

from Top.

5.3. Informational Limitations
It is unfortunately not possible to determine f1 uniquely by using the direct algorithm of section 5.1. To see
this, imagine the following scenario: We pick a random parameterization we hope represents f1ðtÞ. Howev-
er, unbeknownst to us, we have actually picked the parameterization representing fðt; 2Þ. For each parti-
cle, we repeatedly draw from this distribution and add it to the clock time (adding one to the
operational time on each draw, instead of two, which would be correct) until the length of the push
phase is over. We then repeat the process for the pull phase, subtracting one instead of two. Since the
operational time is incremented and then decremented by the same multiplier, it reaches zero after
the same number of transitions as if the multiplier were unity. Thus, we will also generate the correct
breakthrough curve by this method, and we cannot distinguish between different members of the family
fðt; uÞ by Monte Carlo analysis. If f1ðtÞ has a power-law tail, and one is only interested in characterizing
its exponent, b, then selection of any member of the family fðt; uÞ should be sufficient, as all will share
the same b. However, this is not sufficient for predictive modeling. Note that since f1ðtÞ is both the sole
functional determinant of the breakthrough curve, and contains exactly the information required for pre-
dictive modeling, this represents a limitation of the push-pull test methodology, not this particular inter-
pretive method.

We will now demonstrate that the impossibility of unique identification of f1 may be attributed to lack of
sensitivity of the well breakthrough curve to the capture probability, k. Combining (8) and (15) and explicitly
writing k as a parameter yields

~fðs; u; kÞ5e2ðus1ku½12~w imðsÞ�Þ; (18)

which can be rewritten as
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~fðs; u; kÞ5e2ðu21Þse2ðs1ku½12~w imðsÞ�Þ:

(19)

Determining the inverse Laplace trans-
form, it follows that

fðt2ðu21Þ; u; kÞ5fðt; 1; kuÞ: (20)

We established immediately above
that breakthrough curves drawn from
fðt; u; kÞ and fðt; 1; kÞ are not distin-
guishable by Monte Carlo analysis. We
will use the relational operator �� to
indicate distributions that cannot be
distinguished by push-pull analysis, so
fðt; u; kÞ �� fðt; 1; kÞ.

Consider two values, u1 and u2, arbi-
trary save for the constraints u1 	 1
and u2 	 1. Then by (20),

fðt; 1; ku1Þ 
 fðt11; u1; kÞ
�� fðt11; 1; kÞ; (21)

and similarly,

fðt; 1; ku2Þ 
 fðt11; u2; kÞ
�� fðt11; 1; kÞ: (22)

Defining k1 � ku1 and k2 � ku2,

fðt; 1; k1Þ �� fðt; 1; k2Þ: (23)

Since in this analysis k can have any
magnitude, k1 and k2 are arbitrary.
This analysis shows mathematically,
and for arbitrary wim, push-pull testing
will be largely unresponsive to the cap-
ture rate, k, which we observed for

exponential wim in section 3.2. The variations in the breakthrough curves we then are justified in attributing
to variation in wim. This lack of sensitivity to k is inherent in a push-pull test methodology, not an artifact of
the interpretation scheme.

5.4. Numerical Demonstration
Presently, we give a twofold demonstration. In particular, we seek to show:

1. That the breakthrough curve found using the indirect Monte Carlo algorithm matches the ‘‘true’’ break-
through curve generated by particle tracking, if seeded with the correct k and wim.

2. That the breakthrough curve at the well is insensitive to k and sensitive to wim.

We return for a final time to the canonical example. We demonstrate our first point by running the indirect
Monte Carlo algorithm through once (i.e., running the outer loop once, without guessing new sets of
parameters), initially seeded with the same mass transfer parameters used in the canonical example (recall
that in that example, wim is exponential with parameter l5 1

3 h21, and k510 h21). It is seen in the upper
plot of Figure 10, that there is a solid match between breakthrough curves generated by particle tracking
on the full velocity field in section 3.3 and by the purely temporal, subordination-based Monte Carlo algo-
rithm of section 5.2.

Figure 9. (top) Directly simulated breakthrough curve or left-to-right transit times
in the flow field illustrated in Figure 8, with no mobile-immobile mass transfer.
(bottom) Comparison of breakthrough curves for the same scenario but with
mobile-immobile mass transfer, as computed directly by particle tracking (solid
curve), and by applying relation (17) to the pdf shown on the top plot (dashed
curve). NB: Axes on the two subplots have different scales.
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The second point is also illustrated in the same figure. On the upper plot, the results of running the
Monte Carlo algorithm once, with values of k perturbed by an order of magnitude in both directions are
shown; it is apparent that this has a negligible effect on the final anticipated breakthrough curve. On
the lower plot, k is fixed at the correct value, with values of l perturbed by an order of magnitude in
both directions. The profound effect on the observed breakthrough curve is visible. We thus corroborate
the argument that the well breakthrough curve is sensitive to wim (meaning in this case, l), but insensi-
tive to k.

6. Analysis of MADE Site Push-Pull Test

Previously, our analysis has been performed on a synthetic push-pull test, with exponentially distributed wim. To
conclude the presentation, we now demonstrate our Monte Carlo parameterization scheme on data from a real

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100 120 140 160 180 200

R
e

la
�

v
e

 c
o

n
c
e

n
t
r
a

�
o

n
 a

t
 w

e
ll

Time since start of push phase [h]

Par�cle tracking simula�on

Monte Carlo: lambda = 100

Monte Carlo: lambda = 10

Monte Carlo: lambda = 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100 120 140 160 180 200

R
e

la
�

v
e

 c
o

n
c
e

n
t
r
a

�
o

n
 a

t
 w

e
ll

Time since start of push phase [h]

Par�cle tracking simula�on

Monte Carlo: mu = 3.33

Monte Carlo: mu = 3.33e-1

Monte Carlo: mu = 3.33e-2

Figure 10. Illustration of the respective impact of changes in k and changes in l on Monte Carlo-predicted breakthrough curves, ver-
sus the ‘‘true’’ breakthrough curve from the canonical example. (top) The Monte Carlo algorithm was run for values of k varying over
three orders of magnitude (the middle value being correct), and l held steady at the correct value. (bottom) The Monte Carlo algo-
rithm was run for values of l varying over three orders of magnitude (the middle value being correct), and k held steady at the correct
value.
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push-pull test, one for which a nonexpo-
nential wimðtÞ is appropriate. The test
was performed by Liu et al. [2010] at
the well-known MADE site, which is a
multiple-porosity, heterogeneous hydrau-
lic conductivity site. This test thus repre-
sents a suitable one for our theory.

The push-pull test we modeled is careful-
ly described by Liu et al. [2010]. The
parameters that are relevant to our
modeling are summarized here: the push
phase lasted for 26.75 h (the injection
contained solute for the first 4.1 h, fol-
lowed by native water for the rest of the
phase), with Qin58:18 m3 d21. Pumping
was halted for 18.7 h. Finally, the pull
phase took place for 410.3 h, with
Qex57:90 m3 d21.

The test was successfully modeled by Liu et al. by fitting a high resolution (over 107 cell) 3-D numerical flow
and transport model, where three irregularly shaped zones of varying hydraulic conductivity were populat-
ed by means of extensive direct-push measurements in the vicinity of the test well. In addition to the
detailed, irregular hydraulic conductivity field, their model contained six tunable transport parameters
(three dispersivities, total porosity and two directly describing the mobile-immobile process), three of which
were pre-populated by other testing at the site. The other three parameters were calibrated from the push-
pull test data, resulting in the fit shown in Figure 11.

We fit the same data by use of the Monte Carlo technique outlined in section 5. For simplicity, we assume
an instantaneous release of solute at Tcl5Top50, as contrasted with the nonnegligible time of solute injec-
tion in the actual push-pull test. (This may be a cause of the slight divergence from measured concentra-
tions seen at very early time in Figure 11.) We also assume that wimðtÞ has the form of a truncated power
law (TPL), which is a heavy-tailed distribution with exponential tempering at late time. It is defined [Berko-
witz et al., 2006] by three parameters, t1 ½T�; t2 ½T�, and b. As usual, wmðtÞ, is taken as exponential, defined by
k. Thus, we are faced with a four-parameter inverse problem. Our best fit is also shown in Figure 11. This fit
corresponds to parameters t150:0173 d, t2512:2 d, and b50:71, which represents highly anomalous trans-
port. CTRW models of realistic transport commonly employ values of b > 1 (larger values, all else being
equal, indicate quicker late-time approach to the Fickian regime). Given the magnitude of t2 (which may be
thought of as the onset time for late-time exponential tempering), we see that this is reflected in the break-
through curve tail, but does not affect the essential power-law nature of f1.

It may be initially surprising to see that the quality of fit obtained by our simple four-parameter scheme is
comparable to the quality of fit obtained by a detailed 3-D numerical model. However, the insight that we
derive from the isochrone conception is that the K-field variability is essentially invisible to a push-pull
methodology. A useful implication of these results is that there appears to be no need for complex 3-D
numerical models to interpret push-pull data, as their parameters will be not constrained by the data. Since
both models calibrate mobile-immobile trapping with exponential wmðtÞ, it is perhaps not surprising that
they give similar quality results. We consider that the excellent fit seen here provides practical corroboration
for the theory developed above.

7. Summary and Conclusions

We analyzed the nature of the path reversibility assumption that underpins much of the push-pull interpre-
tation literature by means of a parametric study. We quantified the combined scattering effect of ambient
drift, local-scale dispersion, and K-field heterogeneity, and compared it with the scattering effect of
mobile-immobile mass transfer. We identified a region of the parameter space in which path reversibility
could be unproblematically assumed while attributing the push-pull breakthrough curve behavior to

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 2 4 6 8 10 12 14 16

R
e

la
�

v
e

 c
o

n
c
e

n
t
r
a

�
o

n
 a

t
 w

e
ll

 

Time since start of pull phase [days] 

Experimental data

Best Monte Carlo fit

Best fit by Liu et al.

Figure 11. Comparison of experimental measurements at the MADE site push-
pull tracer test with the best fit breakthrough curve predicted by our algorithm,
and the closest-fitting 3-D numerical model in Liu et al. [2010].
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mobile-immobile mass transfer. We then presented a new conceptual model, based on travel time pdf’s, for
the interpretation of push-pull tracer tests to quantify mobile-immobile behavior, alongside a Monte Carlo
technique for solving the parametric inverse problem by iteratively generating breakthrough curves in
using an efficient subordination-based scheme. Our conceptual scheme avoided making assumptions about
the spatial homogeneity of the flow field; only about the homogeneity of the mass transfer processes. The
mobile-immobile system is considered to be spatially homogeneous, with mobile solute subject to probabil-
ity of immobilization per unit time k and the length of single immobilization event to be drawn from pdf
wim. The interpretation methodology is based on the calibration of f1ðtÞ, the probability distribution func-
tion for the time taken to transition between isochrones (equal-arrival-time contours) of Darcy flow with
unit-time spacing. This function was seen to uniquely determine the breakthrough curve at the well, and to
provide enough information to add mobile-immobile behavior into other transport models, using an ele-
gant transformation in the Laplace domain. Analyzing nonuniqueness, it was seen that additional informa-
tion, besides that available from the push-pull test, is needed for predictive modeling.

We summarize here the key conclusions arising from the ideas and numerical experiments considered
above:

1. Contrary to common assumption, path reversibility is not assured in push-pull tests. Only for sufficiently
slow remobilization processes will scattering in the well return time (i.e., breakthrough) pdf, b(t), due to
mobile-immobile mass transfer predominate over that due to pathline hysteresis (caused by hydrody-
namic factors such as local-scale dispersion and ambient drift).

2. For wim with large mean, we justified the idealization that the push-pull breakthrough curve is affected
only by mobile-immobile mass transfer and contains no information about drift and local-scale
dispersion.

3. If there is no local-scale dispersion or ambient drift (path reversibility idealization), the pdf f1ðtÞ entirely
determines the push-pull breakthrough curves. It can also, regardless of drift velocity, be employed to
directly incorporate mobile-immobile mass transfer into any advective transport model. f1ðtÞ can be
viewed in two different ways: as a single CTRW transition distribution in the RP-CTRW framework, or as a
subordinator in the subordination framework, highlighting the connection between the approaches in
the context of mobile-immobile mass transfer.

4. Assuming solute path reversibility, push-pull tests were seen to reveal nothing spatial. Not only is irregu-
lar isochrone shape essentially invisible, so too is the spatial scale. If the units of the plots in Figure 7
were instead cm or km, but the corresponding f1ðtÞ functions were unchanged, the same breakthrough
curve would be observed at the well.

5. A corollary of this is that the radial flow-field symmetry idealizations commonly used in push-pull test
interpretation are harmless to the extent that the path-reversibility idealizations are harmless.

6. It was seen impossible to identify f1ðtÞ from a family of functions fðt; uÞ. If wim has a power-law tail,
implying that f1ðtÞ has one also, and if one is interested in its exponent (as the determinant of the nature
of the anomalous transport), then this may be sufficient, since all members of the family have the same
power-law tail. However, direct fitting of f1 does not enable predictive modeling.

7. The possibility of directly computing the underlying wimðtÞ, by a subordination-based Monte Carlo tech-
nique that involved only temporal variables, was demonstrated. However, the immobilization rate, k,
must be estimated by other means; it is not identifiable by a push-pull methodology.

8. The Monte Carlo techniques were shown applicable to real data from a push-pull experiment in a highly
heterogeneous aquifer at the MADE site. Our Monte Carlo method was seen to perform as well as direct
simulation using an elaborate 3-D numerical model with explicitly modeled zones of different hydraulic
conductivity. The travel time/isochrone theory, which implies the invisibility of large-scale heterogeneity,
explains this perhaps surprising result.

9. Assuming f1ðtÞ has been correctly identified, a mathematical formula allows incorporation of mobile-
immobile behavior into transport models encoding advective-dispersive effects only.

A possibly important direction for future research is further investigation of the information content of the
push-pull test. How rich a family of functions wim can we characterize, to what degree of uncertainty, and
what are the implications of this uncertainty for model predictions related to contaminant transport under
general flow conditions (different from the push-pull-test flow configuration)? It is also important to develop
means to characterize the immobilization rate, k, simply and reliably.
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