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Abstract

D-Wave quantum annealers represent a novel computational architecture and have

attracted significant interest. Much of this interest has focused on the quantum behavior of

D-Wave machines, and there have been few practical algorithms that use the D-Wave.

Machine learning has been identified as an area where quantum annealing may be useful.

Here, we show that the D-Wave 2X can be effectively used as part of an unsupervised

machine learning method. This method takes a matrix as input and produces two low-rank

matrices as output—one containing latent features in the data and another matrix describing

how the features can be combined to approximately reproduce the input matrix. Despite the

limited number of bits in the D-Wave hardware, this method is capable of handling a large

input matrix. The D-Wave only limits the rank of the two output matrices. We apply this

method to learn the features from a set of facial images and compare the performance of

the D-Wave to two classical tools. This method is able to learn facial features and accurately

reproduce the set of facial images. The performance of the D-Wave shows some promise,

but has some limitations. It outperforms the two classical codes in a benchmark when only a

short amount of computational time is allowed (200-20,000 microseconds), but these results

suggest heuristics that would likely outperform the D-Wave in this benchmark.

Introduction

Single-core computational performance relentlessly improved for decades, but recently that

progress has begun to slow [1]. As a result, alternative computational architectures have

sprung up including multi-core processors [2], graphic processing units [3], neuromorphic

computing [4], and application-specific integrated circuits to name a few. Here we explore the

use of another new architecture: quantum annealing [5]. In particular, we utilize the form of

quantum annealing realized with D-Wave hardware [6, 7], which has been used to solve a
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number of machine learning problems [8–10]. We focus on a machine learning problem based

on matrix factorizations, and describe an algorithm for computing these matrix factorizations

that leverages D-Wave hardware. We apply the algorithm to learn features in a set of facial

images.

Matrix factorization has been a fundamental problem in applied mathematics for many

years with methods such as singular value decomposition, LU decomposition and QR

decomposition forming the building blocks of many computational algorithms [11, 12].

More recently, low-rank matrix factorization methods have been utilized to extract features

from datasets in unsupervised machine learning analyses. In the context of facial images,

matrix factorization has been used to extract “eigenfaces” [13] and parts (e.g., mouths,

noses, eyes, etc.) of faces [14]. These methods enable each face in a large database of facial

images to be accurately and concisely represented as a linear combination of a small number

of vectors. The coefficients of these vectors can be used as low-dimensional inputs for facial

recognition algorithms [13, 15, 16]. This discussion has focused on using matrix factoriza-

tion to extract features from facial images and we will apply our method to a database of

facial images.

From a machine learning perspective, matrix factorization can be used for dictionary learn-

ing [17] or to aid feature selection [18]. There are a variety of feature selection methods [19–

23] that can be used to help supervised machine learning methods avoid overfitting and the

curse of dimensionality (since they reduce the dimension). In the context of image analysis,

machine learning is used for a variety of tasks including pattern recognition [24], object detec-

tion [25], and deconvolution [26, 27] among many other possibilities. The matrix factorization

methods that we describe here can be considered as a member of this set of machine learning

methods for image analysis. However, matrix factorization can be used to extract features

from a wide variety of datasets and is largely agnostic to the content of the data. That is, it is

not restricted to image analysis.

There is an ongoing back-and-forth regarding whether or not D-Wave’s hardware pro-

vides performance benefits over classical single-core computing [28–31]. Here, we bench-

mark the performance of two classical approaches against the performance of the D-Wave.

Much of the debate about the D-Wave’s performance has centered on problems that are

custom-tailored to fit D-Wave’s hardware. A component of the matrix factorization prob-

lems that we study here can be solved on the D-Wave, but is not customized for the D-Wave

and represents a real rather than synthetic problem. The D-Wave outperforms the two clas-

sical approaches in a benchmark, but the performance of the two classical approaches sug-

gests a heuristic that could be implemented on a classical computer to outperform the

D-Wave in this benchmark. This mixed result on the performance of the D-Wave compared

to classical tools is in agreement with the most recent results [31] showing that, even for cus-

tom-tailored problems, the D-Wave does not outperform the best classical heuristics.

Despite this, our results show that the D-Wave can outperform very good classical tools

when only a short amount of computational time is allotted to solve these real-world prob-

lems. We also provide a discussion of how future improvements to the algorithm presented

here and D-Wave’s hardware could improve performance for these matrix factorization

problems.

The remainder of this manuscript is organized as follows. First, we describe the methods

used to solve the matrix factorization problems and perform the benchmarking. Next, we

describe the results that we obtained in solving a matrix factorization problem for a set of facial

images and the benchmark results. Finally, we discuss the results and indicate how future

developments might improve the performance of the D-Wave for this problem.
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Methods

We seek to represent an n ×m matrix, V, as the product of two matrices, W and H, where W
is an n × k matrix and H is a k ×m matrix. That is, we wish to find W and H such that

V �WH ð1Þ

We impose constraints on W and H. In particular, the components of W must be nonnegative

(i.e., Wij� 0) and the components of H must be binary (i.e., Hij 2 {0, 1}). Since W is a nonneg-

ative matrix and H is a binary matrix, we describe this matrix factorization as Nonnegative/

Binary Matrix Factorization (NBMF). This is in contrast to Nonnegative Matrix Factorization

(NMF) [14] where H is allowed to take on any nonnegative value, not just 0 or 1. To satisfy Eq

1, we utilize an alternating least squares algorithm [32, 33] (see Algorithm 1).

Algorithm 1 A high-level description of the alternating least squares algorithm that we

employ to perform NBMF.
Require: V, k
Ensure: W, H
Randomly initialize each element of H to be either 0 or 1
while not converged do

W≔ arg minX2Rþn�k jjV � XHjjF þ ajjXjjF
H≔ arg minX2f0;1gk�m jjV � WXjjF

end while
From algorithm 1, we focus on utilizing a D-Wave 2X quantum annealer to compute

H ¼ arg min
X2f0;1gk�m

jjV � WXjjF ð2Þ

where ||�||F is the Frobenius norm. Note that Eq 2 can be solved by solving a set of independent

optimization problems (one for each column of H). This is because the variables in the ith col-

umn of H impact only the ith column of WX, and the variables outside the ith column of H do

not impact the ith column of WX—see S1 Appendix for details. That is, if we denote the ith col-

umns of H and V by Hi and Vi, respectively, then

Hi ¼ arg min
q2f0;1gk

jjVi � Wqjj2 ð3Þ

for i = 1, 2, . . ., m. This means that we can solve for H by solving a series of linear least squares

problems in binary variables. This type of problem can be readily solved on D-Wave hardware

[34], as long as the number of binary variables is small. Eq 2 involves km binary variables, but

Eq 3 involves only k binary variables. Since the D-Wave 2X imposes severe limitations on the

number of binary variables that can be dealt with, this reduction in the number of variables is

crucial. In practice, this means that relatively large datasets can be analyzed (i.e., n and m can

be large). Since the number of variables the D-Wave works with at any given time is deter-

mined only by k, the D-Wave imposes restrictions only on the number of features (i.e., k). This

is not a major imposition, because it is usually desirable for k to be small. That is, the rank of

the factorization is usually supposed to be low.

We also compare the performance of the D-Wave to solve Eq 3 with two classical

approaches. One utilizes the JuMP [35] modeling language and a mathematical programming

tool called Gurobi [36]. The other, called qbsolv [37], utilizes is an efficient, open-source

implementation of tabu search [38, 39]. Qbsolv can be used in two different modes: a tabu

search which uses purely classical computing and another which uses a combination of classi-

cal computing and the D-Wave. We use only qbsolv’s purely classical tabu mode here. The per-

formance is compared using a cumulative time-to-targets benchmark that is a variation of the
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time-to-target benchmark [40]. In the course of executing algorithm 1, Eq 3 must be solved

many times for different values of i and W. Each time this equation is solved, the D-Wave is

given a fixed number of annealing cycles to minimize ||Vi −W q||2 (we look at examples where

the number is fixed at 10, 102, 103, and 104). Each annealing cycle results in one approximate

solution to Eq 3, and we denote the best of these approximate solutions by H�i . The best solu-

tion, is used to generate a target value for the objective function, jjVi � WH�i jj2, that the classi-

cal approaches (qbsolv and Gurobi) must match. The cumulative time-to-targets benchmark

computes the cumulative amount of time it takes for qbsolv or Gurobi to find a solution that is

at least as good (in terms of ||Vi −WHi||2) as the best solution found by the D-Wave for each

instance of Eq 3 that is encountered in executing algorithm 1. This cumulative time-to-targets

is then compared with the amount of annealing time used by the D-Wave. If qbsolv or Gurobi

take more than 10 minutes to reach an individual target, the time to reach that target is set to

10 minutes. The 10 minute limit is an expedient that enables the analysis to be run in a reason-

able amount of time. Gurobi never reached the 10 minute limit, but qbsolv did in a number of

cases.

Programming the D-Wave

D-Wave quantum annealers deal natively with quadratic, unconstrained, binary optimization

(QUBO) problems [41]. These problems are associated with objective functions that have the

form

f ðqÞ ¼
X

i

aiqi þ
X

i<j

bijqiqj ð4Þ

where q = (q1, q2, . . ., qn). One might think of a 0th order approximation of the D-Wave’s

behavior as being that each anneal returns a vector, q, so that f(q) is minimized. A 1st order

approximation of the D-Wave’s behavior is that each anneal returns a sample, q, from a Boltz-

mann distribution where f(q) is the energy. Both of these approximations are inexact, but high-

light the basic behavior of the D-Wave: each annealing cycle returns a sample, q, which tends

to make f(q) small. Eq 3 can be readily put into the form of a QUBO by setting [34]

aj ¼
X

l

WljðWlj � 2VijÞ ð5Þ

bjk ¼ 2
X

l

WljWlk ð6Þ

Having reformulated Eq 3 in this way, the quadratic coefficients in the QUBO, bij, are generally

all nonzero. However, the D-Wave’s hardware imposes sparsity constraints on the bij. These

constraints can be overcome via embedding [42–44], where multiple physical qubits are used

to represent a single binary variable. The D-Wave’s hardware is composed of bits that are cou-

pled via a “Chimera” graph, CM;N;L, which consists of an M-by-N grid of KL,L bipartite graphs

[44]. The design for the D-Wave 2X is based on C12;12;4. It has been shown that a complete

graph with LM nodes can be embedded in CM;M;L using M + 1 physical bits per binary variable

[44].

Since the bij’s in our problems are never exactly zero, a complete graph with the number of

nodes equal to the number of binary variables must be embedded in the graph imposed by the

D-Wave 2X chip. If a D-Wave 2X chip had no defects (i.e., if all the qubits and couplers were

operational), the maximum number of binary variables that could be used for these problems

is 49 (if the matrix formed by the elements bij had some natural sparsity to it, this number
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could increase). However, some of the qubits and couplers on these chips are not available for

use, and as the number of binary variables increases, the number of physical qubits required to

represent each variable increases. Since using a larger number of physical qubits to represent a

single binary variable is associated with poor performance, we limit our study to 35 binary var-

iables. In this case, we found an embedding where each binary variable is represented by at

most 19 physical qubits.

We analyze the algorithmic complexity of approximately solving Eq 2 using the algorithm

described here. Approximately solving Eq 2 requires the solution of m instances of Eq 3.

Approximately solving each instance of Eq 3 comes with two computational components—

one on the classical computer and another on the quantum annealer. The computational time

on the quantum annealer is determined by the number of samples, N, obtained from the quan-

tum annealer. Note that N is fixed throughout the execution of the algorithm. The total

computational time associated with the quantum annealer is thus O(mN).

The time required to use a classical computer to formulate the input to the quantum annea-

ler can be understood via Eqs 5 and 6. The sum in Eq 5 contains n terms and this sum must be

computed k times (to fill out the vector elements of the QUBO, aj) for each instance of Eq 3,

resulting in a complexity of O(nk). The sum in Eq 6 contains n terms and this sum must be

computed k2 times (to fill out the matrix elements of the QUBO, bij) for each instance of Eq 3,

resulting in a complexity of O(nk2). Therefore, for each instance of Eq 3, the computational

complexity on the classical computer is O(nk2). Since Eq 3 must be solved approximately m
times in order to approximately solve Eq 2, the computational complexity on the classical com-

puter for approximately solving Eq 2 is O(mnk2).

The total computational complexity (including both the quantum annealing time and clas-

sical time) is thus O(mnk2 + mN). This is in contrast to exact algorithms [45] that can perform

the factorization in O(nk2k + mnk + mk2). The key trade-off here is to exchange an approxi-

mate solution that can be obtained in polynomial time in k for an exact solution whose run

time grows exponentially with k. Once the rank of the factorization, k, becomes sufficiently

large the exact algorithm becomes intractable while the approximate algorithm remains

performant.

Results

We analyzed the same set of 2,429 facial images [46] (available at http://www.ai.mit.edu/

courses/6.899/lectures/faces.tar.gz) that was previously analyzed to learn the parts of faces

using nonnegative matrix factorization [14]. To represent this set of images as a matrix, each

column of the matrix corresponds to a different facial image and each row corresponds to a

different pixel in the image. That is, Vij contains the value of pixel i from image j. Fig 1 shows

the features that were learned using algorithm 1 with 10,000 anneals per solve of Eq 3 and how

those features are used to reconstruct the image of a face. Some of the features in Fig 1 may

appear to be all black, but they actually contain subtle features such as a bright spot in the

lower-left corner or a shiny cheek/nose (see Fig 2). Unlike NMF where the parts of faces are

learned [14], the features learned by NBMF are holistic. One can view NBMF as being a

method that is somewhere in between the NMF and vector quantization methods considered

in [14]. Like NMF, it imposes the nonnegativity constraints on W, but, unlike NMF, imposes

binary constraints on H. Vector quantization imposes binary constraints on H, but adds an

additional constraint that each column of H can only contain one nonzero entry. This addi-

tional constraint causes vector quantization to learn holistic, prototypical faces. NBMF appears

to learn features that are holistic like the features that come out of vector quantization, but,

unlike vector quantization, NBMF’s features are not necessarily prototypical faces. Many of
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them appear ghostly and the ones that are mostly black are even more subtle. As in Fig 1, these

subtle and ghostly features can be combined to reproduce a face.

The NBMF method employed here has some advantages and disadvantages compared to

NMF. One advantage of NBMF is that H is more sparse when NBMF is used than when NMF

is used. Analyzing this database of facial images using 35 features (k = 35), the H produced by

NBMF is approximately 85% sparse (i.e., 85% of the elements of H are zero) whereas the one

produced by NMF is approximately 13% sparse. Further, the storage requirements for each

component of H are less for NBMF (1 bit) than NMF (e.g., 64 bit floating point numbers were

used here). A disadvantage is that ||V −WH||F is larger for NBMF than NMF. For this database

of facial images, ||V −WH||F using NMF was about 46% of this norm when using NBMF. In

layman’s terms, NMF had about half as much error as NBMF. NMF has the additional advan-

tage that W is about 41% sparse, whereas W is dense for NBMF in the images analyzed here.

Fig 3 shows the results of the cumulative time-to-targets benchmark. The cumulative time-

to-targets for qbsolv always exceeds the cumulative annealing time by a factor of 20-50

depending on the number of anneals. In the test with 10, 100, and 1,000 annealing cycles, Gur-

obi’s cumulative time-to-targets exceeds the cumulative annealing time by factors of about 61,

7 and 1.2, respectively. In the test with 10,000 anneals, Gurobi’s cumulative time-to-targets

was less than the cumulative annealing time by a factor of about 6.4.

Gurobi and qbsolv show different performance trends in this benchmark that we explore

in more detail with Fig 4. Qbsolv’s performance is characterized by frequently reaching the tar-

get before the annealing time for individual problems, but, when it fails to reach the target

before the annealing time, it can take a comparatively long time to reach the target. These

problems where qbsolv takes a very long time to reach the target make up a large portion of

Fig 1. Face image reconstruction using features learned by NBMF. The five-by-seven matrix of images on the right shows the

features that were learned. The two images on the left show the original image (top) and the reconstruction (bottom). The

reconstruction is obtained by summing the features that are boxed in green. Note that although some of the features appear to be all

black, they actually contain facial features that are small in magnitude (black corresponds to 0, white corresponds to 1).

https://doi.org/10.1371/journal.pone.0206653.g001
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the cumulative time-to-targets. As the D-Wave takes more and more samples, the fraction of

the problems where the time-to-target exceeds the annealing time increases, as can be seen

from the increasing number of red dots above the orange line in Fig 4. When 10 anneals are

used, qbsolv’s time-to-target exceeds the annealing time in less than 1% of the problems,

whereas when 10,000 anneals are used, qbsolv’s time-to-target exceeds the annealing time in

more than 28% of the problems. Gurobi rarely has problems for which it takes a very long time

to reach the target set by the D-Wave. In the more than 90,000 problems considered here, Gur-

obi took more than a second to reach the target set by D-Wave only 21 times with the maxi-

mum time being 13.6 seconds. By contrast, qbsolv took more than a second to reach the target

5,509 times and hit the 10 minute maximum in 24 cases. While Gurobi rarely takes a long time

to reach the target set by the D-Wave, it also rarely solves the problems very quickly. Gurobi

reached the target set by the D-Wave in under a millisecond in only 57 cases, whereas qbsolv

did this in almost 80,000 cases.

In short, Gurobi’s performance is characterized by consistency and qbsolv’s performance is

characterized by solving many problems very quickly and some problems slowly. Qbsolv’s

tabu search implements a lean heuristic: “no U-turn.” That is, qbsolv performs a random walk

through solution space and attempts to avoid visiting the same solution twice. The leanness of

this heuristic enables qbsolv to find good solutions quickly, but relying on a single heuristic

leaves it prone to longer run times when the heuristic does not work well. Gurobi, on the other

hand, implements a wide array of heuristics. Gurobi’s complexity prevents it from achieving

the very fast solution times obtained by qbsolv, but using a large set of heuristics enables it to

solve more problems relatively quickly.

Fig 2. The same features as shown in Fig 1 are shown. Here they are rescaled to maximize contrast so that the darkest pixel is black

and the brightest pixel is white.

https://doi.org/10.1371/journal.pone.0206653.g002
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Fig 3. Cumulative time-to-targets for qbsolv (red) and Gurobi (blue) as a function of the number of annealing cycles executed

by the D-Wave. When the number of anneals is 10, 100, or 1,000, the cumulative time-to-targets for both qbsolv and Gurobi exceeds

the cumulative annealing time (orange). When the number of anneals is 10,000, the cumulative time-to-targets for qbsolv exceeds

the cumulative annealing time, but Gurobi’s cumulative time-to-target is less than the cumulative annealing time. Note that in each

of the 10, 100, and 1,000 anneal cases, 24,290 QUBOs were solved whereas only 19,432 QUBOs were solved in the 10,000 anneal

cases. This was caused by earlier termination of the NBMF (algorithm 1).

https://doi.org/10.1371/journal.pone.0206653.g003

Fig 4. The time-to-target for each instance of Eq 3 is shown for qbsolv (red dots), Gurobi (blue dots) in comparison to the

annealing time used by the D-Wave (orange line). A different number of anneals was used in each execution of the NBMF

(algorithm 1) ranging from 10 to 10,000.

https://doi.org/10.1371/journal.pone.0206653.g004
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Discussion

We have identified a performance regime (fast solutions that are good, but not necessarily

optimal) where the D-Wave, at least by the benchmark used here, outperforms two classical

codes in a problem that is not custom-tailored to the D-Wave as other problems have been

[47, 48]. This was demonstrated by the cases we studied with 10, 100, and 1,000 anneals where

the cumulative time-to-targets for both Gurobi and qbsolv exceeded the annealing time used

by the D-Wave. We emphasize that these results do not demonstrate any sort of quantum

supremacy. In fact, they suggest a classical heuristic which would likely outperform the

D-Wave: run qbsolv for a short period and if it fails to match the target, then switch to Gurobi.

This would leverage qbsolv’s ability to frequently outperform the D-Wave, and Gurobi’s ability

to never lose too badly to the D-Wave. Other benchmarks could also be used that might cast

the D-Wave in a more negative light. For example, allowing the D-Wave to set the targets in

the cumulative time-to-targets benchmark might be an advantage, and reversing the roles (i.e.,

allowing Gurobi or qbsolv to set the targets in a fixed amount of computational time) might

produce different results.

Given the remarkable performance improvements over many generations of classical

microprocessors [1] and the impressive algorithmic improvements in mixed-integer program-

ming tools like Gurobi [49] over the past several decades, it is surprising that D-Wave’s third

generation hardware and our straight-forward algorithm can be competitive at all. In the series

of four chips that D-Wave has released, the number of qubits has approximately doubled from

one generation to the next while the number of couplers per qubit has remained essentially

unchanged. D-Wave’s fifth generation chip is expected to at least double the number of cou-

plers per qubit [7, 50]. While it is not known what form this chip will take, a design that would

achieve this could be obtained by replacing the C16;16;4 design (which is used by the D-Wave

2000Q) with a C16;16;12 design. We hypothesize that adding more couplers per qubit would have

a significant, positive impact on the performance of the D-Wave for the problems we consider

here. If the number of binary variables were fixed at 35, it would result in fewer physical qubits

being used to represent each binary variable. For example, a complete graph with 35 nodes

could be embedded in C3;3;12 (which is a subgraph of C16;16;12) using 4 physical bits per variable.

This is much less than the 10 physical bits per variable needed to embed in the C12;12;4 graph

that forms the basis for the D-Wave 2X used here. Because of this, if the size of the problem is

fixed, we hypothesize that D-Wave’s fifth generation chip would provide much better perfor-

mance than the D-Wave 2X. Increasing the number of couplers per qubit would also enable

the possibility of going well beyond the 35 binary variables considered here without using an

excessive number of physical qubits to represent each binary variable. That is, we would expect

D-Wave’s fifth generation chip to be capable of solving NBMF problems with more features

than can be solved with the third generation chip that we have used here. For example, a com-

plete graph with 192 nodes can be embedded in C16;16;12 whereas it is neither possible to embed

a 66 node complete graph in C16;16;4 (D-Wave 2000Q) nor a 50 node complete graph in C12;12;4

(D-Wave 2X) [44]. In addition to the improvements that are anticipated in future D-Wave

hardware, there are techniques that could be utilized to potentially improve our algorithm.

Symmetries could be exploited (e.g., via spin reversal transformations or symmetry in the com-

plete graph that we embed in D-Wave’s hardware graph), the strength of chains arising from

the embedding process could be optimized, hardware biases could be learned [51] and

exploited, and the embeddings could be improved by setting quadratic coefficients in the

QUBO that are approximately zero to exactly zero. Exploring and exploiting these techniques

is beyond the scope of this manuscript, but we expect that some or all of them could provide

significant algorithmic improvements.
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The relatively short computational time (from 200μs up to 20, 000μs) regime where the

D-Wave outperforms qbsolv and Gurobi in our benchmark could be important for big data

problems. For example, when learning the features of a large set of images (much larger than

the 2,429 images considered here), only a small amount of computational time may be avail-

able to solve each problem given in Eq 3. However, in order for the D-Wave’s performance

advantages in this regime to be beneficially leveraged, there must be significant performance

improvements in the time it takes to get problems into and solutions out of the D-Wave. At

present, input and output is performed via the HTTPS internet protocol. The performance of

this bottleneck can clearly be improved. Beyond this, there are other potential bottlenecks that

could prevent the D-Wave from being more performant for these types of problems, such as

the D-Wave’s programming time (“qpu_programming_time”, as reported by D-Wave’s soft-

ware) which was typically about 15 milliseconds in the problems analyzed here. If this pro-

gramming time remains constant as new D-Wave chips become available, then there would

not be much advantage to solving problems where the total annealing time is much less than

15 milliseconds. This could hinder the D-Wave’s performance in the short computational time

regime we have identified where it outperforms Gurobi and qbsolv in the cumulative time-to-

targets benchmark.

In summary, we have demonstrated that this NBMF algorithm can leverage the D-Wave 2X

as a key component in an unsupervised machine learning analysis. Getting performance from

the D-Wave 2X that is competitive with advanced classical tools on a real-world problem is a

significant step forward on the journey towards practical quantum annealing. While there is

still much work to be done to make these quantum annealers of practical use for this type of

problem, our performance results give a glimmer of hope that this may someday be the case.
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