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The Basic Least-Squares Problem 

   



rm  ym  f (tm,)



C  rm ()2

m





Find the values of 1, 2, 3, ..., n such that C is minimized.



Optimization Algorithms 

 

 

 

  

Gradient descent :  Start with an initial guess x0.

Advantages: F(x) will decrease after every iteration. 
 -Decreases cost most quickly for a given change in  parameter 
values. 
Disadvantages: Algorithm tends to zigzag along the bottom of long 
narrow canyons. Approaches the best fit very slowly.  
 
Gradient descent = Steepest descent = First-order gradient-based 
method  

Source: Wikipedia 





Optimization Algorithms 

 

 

 

 
Advantages: Decreases cost most efficiently for a change in its behavior. 

 -Converges quickly in canyons 

Disadvantages: Prone to parameter evaporation (parameters returned by the 
algorithm are far from reasonable values). 

 -Algorithm converges slowly or not at all if initial guess is far from minimum or 
matrix is ill-conditioned.  

(JTJ) applied to approximate second-order Hessian matrix. 

Gauss-Newton = Second-order curvature-based method 

Source: Wikipedia 



The Levenberg-Marquardt Algorithm 

LM algorithm combines the advantages of 
gradient-descent and Gauss-Newton methods. 
  

  -LM steps are linear combination of Gradient-
descent and Gauss-Newton steps based on 
adaptive rules 

Gradient-descent dominated steps until the 
canyon is reached, followed by Gauss-Newton 
dominated steps. 



The Levenberg-Marquardt Algorithm 

   

J = jacobian matrix of derivatives of the residuals with respect to the 
parameters 
λ = damping parameter (adaptive balance between the 2 steps) 
r = residual vector 



Start with an initial guess x0. x is adjusted by  only for

downhill steps.

(JTJ  I)  JT r



Description (pseudocode) of the LM algorithm – 
from Transtrum, Machta, Sethna, 2011 



LevMar Convergence Criteria as implemented in 
MADS 

Algorithm stops when: 

1. Objective function value is below a cutoff value (if specified) OR 

2. J
T
r is small (max element <= eps) OR 

3. Relative change in p is small (<= eps2||p||) OR 

4. Almost singular solution OR 

5. Model predictions are within a certain range of the true minimizer 
(if provided) OR 

6. Algorithm returns invalid (NaN or inf) values OR 

7. Maximum number of iterations is reached. 

 

 

 

 



Choosing the Damping Parameter (λ) 

• Choice of λ is very important for success rate 
and efficiency of the LM algorithm. 

• Increasing λ decreases step size, and vice 
versa. So if a step is unacceptable, λ should be 
increased until a smaller, acceptable step is 
found. If a step is accepted, we want to 
increase step size by decreasing λ, in order to 
proceed more quickly in the correct descent 
direction, speeding up convergence rate.   

Source: Transtrum PhD dissertation, 2011 



Schemes for Updating λ  

• Direct method – increase λ by a fixed factor 
for uphill steps, decrease λ by the same fixed 
factor for downhill steps. 

• Direct method/Delayed gratification – 
increase λ by a small fixed factor for uphill 
steps, decrease λ by a larger fixed factor for 
downhill steps. 

• Indirect method – choose an initial step size Δ, 
then find a λ such that     

Source: Transtrum dissertation, Transtrum, Machta, Sethna, 2011 



Motivation for Delayed Gratification Method 

• Direct method with equal up and down 
adjustments tends to move downhill too quickly, 
greatly reducing steps that will be allowed at 
successive iterations, which slows convergence 
rate (although it appears to have no effect on 
success rate). 

• By using delayed gratification, we choose the 
smallest λ that does not produce an uphill step, 
which slows initial downhill progression but 
speeds up convergence rate near the solution. 

Source: Transtrum, Machta, Sethna, 2011 



Test Function Method Success Rate Av. Jacobian Evals. 

Rosenbrock Direct 0.987 17.9 

Delayed 
Gratification 

0.965 13.4 

Indirect 0.946 32.6 

Powell’s Quadratic Direct 0.783 11.8 

Delayed 
Gratification 

0.812 10.9 

Indirect 0.643 62.1 

Exponential Data 
Fitting I 

Direct 0.017 61.7 

Delayed 
Gratification 

0.161 38.5 

Indirect 0.054 42.3 

Exponential Data 
Fitting II 

Direct 0.009 138 

Delayed 
Gratification 

0.008 73.2 

Indirect 0.013 167 



The Rosenbrock Function 

Ideal for testing optimization algorithms because of the 
difficulty of convergence. Finding the valley that contains the 
global minimum (1, 1) is trivial, but moving along the valley 
to the minimum is very difficult. 
No local minima, though higher dimensional forms contain 
several at unknown locations, making it difficult to test them 
for success rate. 

   

   

A controls the narrowness of the canyon  



f (x,y)  (1 x)2  A(y  x2)2



Higher dimensional form :  f (x)  [(1 xi)
2  A(xi1  xi

2
)2] 

i1

N 1

 xRN





Performance of the LM Algorithm on 
the Rosenbrock Function 

Dimension Success Rate Av. Jacobian Evals. 

2 0.965 13.4 

3 0.993 29.3 

4 0.764 43.6 

5 0.826 19.6 

6 0.825 23.7 

7 0.871 24.5 

8 0.845 22.6 

9 0.844 24.3 

10 0.862 28.1 





Beale :  f (x)  (1.5  x1  x1x2)2  (2.5  x1  x1x2

2
)2  (2.625  x1  x1x2

3
)2



x



y



Geodesic Acceleration 

• Suggested by Transtrum, Machta, Sethna 
(2011) as a further improvement to the LM 
algorithm. 

• Second order correction to step – proposed 
step represents a truncated Taylor series: 

 

 

• In order to accept a step with acceleration 
added, need                  where α is of order 1.  



Source: Transtrum PhD dissertation 



Description (pseudocode) of the LM algorithm with 
acceleration – from Transtrum, Machta, Sethna, 2011 



Computation of Geodesic Acceleration 

• Analytic version – directional second 
derivative of the residuals in the direction of 
the velocity. 

• Finite difference estimation – two additional 

function evals: 

 

    



Solve (JTJ  I)a  JTAm 
  for a.



Modified Rosenbrock Function 

• Used to demonstrate effectiveness of adding 
acceleration to algorithm. 

• Residuals given by:  

A and n control narrowness of the canyon – as A and n increase, 
canyon narrows. Global minimum at (0,0). 



x, A(y  xn ) (n 2)



Function :  f (x,y)  x2  A2(y  xn )2



Modified Rosenbrock Tests 

• Tested function with 4 different “complexities”: 

1. A = 10, n = 2 

2. A = 100, n = 3 

3. A = 1000, n = 4 

4. A = 1000, n = 5 

Initial Guess: (1,1)         Convergence criteria: OF < 1e-12 

•  Comparison between non-acceleration and 
acceleration versions of algorithm (both with delayed 
gratification technique for updating λ). 







Original LM vs LM w/ accel for Modified Rosenbrock 

Blue - original 

Pink - LM w/ acceleration 

Complexity 



Test functions 

 



Rosenbrock :  f (x)  (1 x1)
2 100(x2  x1)

2

       - Global minimum at (1,  1) -  no local minima

Powell's Quadratic :  f (x) 121x1

2
 5(x3  x4 )2  (x2  2x3)4 10(x1  x4 )4

       - Global minimum at (0,  0, 0, 0) -  no local minima

Beale :  f (x)  (1.5  x1  x1x2)2  (2.5  x1  x1x2

2
)2  (2.625  x1  x1x2

3
)2

       - Global minimum at (3.025,  0.474) -  several local minima

Parsopoulos :  f (x)  (cos x1)
2  (sin x2)2

       - Many local minima with same minimum value

De Jong :  f (x)  x1

4
 2x2

4
  global min. (0,  0), no local minima

Clerc' s f1:  f (x)  x1 sin x1  0.1x1  x2 sin x2  0.1x2

       - Global minimum at (0,  0), many local minima

Tripod :  f (x)  x1  x2  50  if x2  0, 1 x1  50 + x2  50  if x1 < 0,

2  x1  50 + x2  50  otherwise. Global minimum at (0, -50) 

Exponential Data Fitting I -  from Minpack - 2 test problem collection 

f i(x)  y i  (x1  x2 exp(tix4 )  x3 exp(tix5))           ti  (i 1) /10

5 parameters,  33 residuals

Exponential Data Fitting II -  from Minpack - 2 test problem collection

f i(x)  y i  (x1 exp(tix5)  x2 exp((ti  x9)2 x 6)  x3 exp((ti  x10)
2 x7)  x4 exp(ti  x11)

2 x8))

ti  (i 1) /10             11 parameters,  65 residuals



Function Success Rate 

(Original 

Version) 

Success Rate 

(Accel Version) 

Average Jac. Evals. 

(Original Version) 

Average Jac. Evals  

(Accel Version) 

2-D Tripod 0.0 0.488 1535 11.0 

2-D Clerc’s F1 0.896 0.909 506 4.7 

Beale 0.518 0.514 19.4 12.0 

De Jong 1.0 1.0 9.7 6.9 

Powell’s 

Quadratic 

0.792 0.810 10.9 8.4 

Parsopoulos 1.0 0.994 3.6 4.0 

Exponential Data 

Fitting I 

0.154 0.068 37.4 17.6 

Exponential Data 

Fitting II 

0.006 0.009 74.4 87.5 

2-D Rosenbrock 0.965 0.936 13.3 29.8 





De Jong:  f (x)  x1

4
2x2

4





Parsopoulos :  f (x)  (cos x1)
2  (sinx2)

2





Clerc' s f1:  f (x)  x1 sinx1 0.1x1  x2 sin x2 0.1x2



Conclusions 
• Levenberg-Marquardt algorithm is a very efficient technique for 

finding minima, and performs well on most test functions. 

• The algorithm includes many different variables that determine 
its efficiency and success rate. The ideal values of these 
variables are very dependent on the test function. 

• Implementing delayed gratification into the algorithm leads to 
higher success rate and fewer jacobian evaluations. 

• Acceleration is an effective addition, but only in controlled 
situations – performance depends greatly on initial guess. 
Often, delayed gratification alone is enough to ensure an 
efficient and reliable fit, but for certain problems, acceleration 
can help a great deal. 

• Proposed LM improvements and applied test functions are 
implemented in MADS (http://mads.lanl.gov)  


