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Matrix factorization is a fundamental applied math problem

v

SVD: A = UXV* where ¥ is diagonal, U, V are unitary
QR: A = QR where Q is orthogonal, R is upper triangular

v
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LU: A= LU where L is lower triangular and R is upper triangular

v

Cholesky: A = LL* where L is lower triangular
NMF: A~ BC where B;j >0 and C; >0
D-Wave NMF: A~ BC where Bj > 0 and Cj; € {0,1}
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Low-rank matrix factorizations
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Unsupervised ML via matrix factorization
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Each column of A is a vectorized
version of an image of a face

Each row of A corresponds to a
particular pixel in the images

Each column of B is a “feature” that
is used to reconstruct the image

Each row of B corresponds to a
particular pixel in the images

Each column of C corresponds to an
image and describes how each feature
is present in the image

Each row of C corresponds to a
feature and describes how that feature
is present in all the images



Unsupervised ML via matrix factorization on the D-Wave
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Are some of those features solid black? No
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How to do it?

v

Use “Alternating Least Squares”

1. Randomly generate a binary C

2. Solve B = argminx||A — XC||r classically

3. Solve C = argminx||A — BX||r on the D-Wave
4. Go to 2

Step 3 is the interesting/D-Wave part
In our analysis, A is 361 x 2491, B is 361 x 35 and C is 35 x 2491.
C has O(10°) binary variables — far too many for the D-Wave, but. ..
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Step 3 in more detail

v

C = argminx||A — BX||r where C and X are 35 x 2491

Step 3 is formulated above as a problem in 35 x 2491 binary variables, but it
decomposes ( “partitions”) into 2491 problems with 35 binary variables each

C; = argminy||A; — Bx||2 where C; is the i*h column of C and x consists of 35
binary variables

35 binary variables fit on the D-Wave easily (can go to 49 with the VFYC)
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Imagine a Beowulf cluster of these. ..



What about performance?
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What about performance?
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» The D-Wave wins the cumulative time-to-targets modest number of anneals are
used (up to 1000), but loses to Gurobi when 10,000 anneals are used
» qbsolv wins most problems, but loses very badly when it loses

» Gurobi takes too long to get rolling on the short time scales, but wins over longer
times



Pros/cons: D-Wave NMF versus classical NMF

Forget the D-Wave and just view this as a method

Pros

» The D-Wave NMF's C matrix is ~ 85% sparse, but classical NMF's C matrix is
only ~ 13% sparse

» The components of the D-Wave NMF's C matrix require fewer bits than classical
NMF's C matrix (1 bit vs. 64 bits)

> Viewed as lossy compression, the D-Wave NMF compresses more densely
Cons

» Classical NMF’s reconstructions have slightly less than half as much error as
D-Wave NMF's reconstructions

» Viewed as lossy compression, the D-Wave NMF loses more information

» The B matrices are about 40% sparse for classical NMF, but dense for D-Wave
NMF



Conclusions

v

Utilized the D-Wave to solve a practical, unsupervised, machine-learning problem

v

The D-Wave outperforms two state-of-the-art classical codes in a cumulative
time-to-target benchmark when a low-to-moderate number of samples are used
» Limitations in getting problems into/out of the D-Wave make these benefits hard to
leverage, but the situation should improve with future D-Wave hardware
» Custom heuristics would likely beat the D-Wave

v

Large datasets can be analyzed on the D-Wave with this algorithm
» We factored a 361 x 2491 matrix for consistency with Lee & Seung (Nature, 1999),
but going larger is not a problem
The D-Wave only limits the rank of the factorization
» Not a major limitation, because we want the rank to be small

v



Preview: PDE-constrained optimization on the D-Wave

» 2D elliptic PDE that can be physically
interpreted as representing heat
transfer, mass diffusion, flow in porous
media, etc.

» Use a custom embedding that
leverages the virtual full yield chimera
solver

» Gurobi can't keep up: even after 24
hours on 88 cores, Gurobi can't find a
solution that matches the D-Wave's
solution

» EES-16 Brownbag: May 11 @ noon in
the EES-16 conference room (Otowi)
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