Novel Unsupervised Machine Learning Methods for Extraction of Features Characterizing Datasets and Models

Velimir V. Vesselinov (monty) (vvv@lanl.gov)
Computation Earth Sciences, Los Alamos National Laboratory, NM, USA

AGU Fall Meeting 2018

Nonnegative Matrix/Tensor Factorization

- ▶ We have developed a series of novel unsupervised Machine Learning (ML) methods
- Our unique ML methods are based in matrix/tensor factorization coupled with custom k-means clustering and nonnegativity/sparsity constraints:
 - ► NMFk: Nonnegative Matrix Factorization
 - ► NTFk: Nonnegative Tensor Factorization
- ► NMFk / NTFk are capable to efficiently process large datasets (GB/TB's) utilizing GPU's & TPU's (TensorFlow, PyTorch, MXNet)
- ▶ NMFk / NTFk have been applied to analyze a series of real-world analyses

► Supervised ML: requires prior categorization (knowledge) of the processed data

Example: Recognize images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot find something that we do not already know

Unsupervised ML: extracts hidden features (signals) in the processed data without any prior information (exploratory analysis for data-driven science)

Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses, etc.); without prior information or training

➤ Supervised ML: requires prior categorization (knowledge) of the processed data Example: Recognize images of cats and dogs after extensive training; but cannot recognize horses if not trained

Cannot find something that we do not already know

 Unsupervised ML: extracts hidden features (signals) in the processed data without any prior information (exploratory analysis for data-driven science)

Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses, etc.); without prior information or training

➤ Supervised ML: requires prior categorization (knowledge) of the processed data Example: Recognize images of cats and dogs after extensive training; but cannot recognize horses if not trained Cannot find something that we do not already know

Unsupervised ML: extracts hidden features (signals) in the processed data without any prior information (exploratory analysis for data-driven science)
 Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses, etc.); without prior information or training

- Supervised ML: requires prior categorization (knowledge) of the processed data Example: Recognize images of cats and dogs after extensive training; but cannot recognize horses if not trained Cannot find something that we do not already know
- Unsupervised ML: extracts hidden features (signals) in the processed data without any prior information (exploratory analysis for data-driven science)

Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses, etc.); without prior information or training

- Supervised ML: requires prior categorization (knowledge) of the processed data Example: Recognize images of cats and dogs after extensive training; but cannot recognize horses if not trained Cannot find something that we do not already know
- Unsupervised ML: extracts hidden features (signals) in the processed data without any prior information (exploratory analysis for data-driven science)
 Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses,

- Supervised ML
 - can introduce subjectivity (through the labeling process)
 - does not provide insights why horses are different than dogs / cats
 - cannot make predictions
 - requires huge training (labeled) datasets
 - is impacted by "adversarial examples"

⇒ major limitations of the supervised methods for data-analytics and data-driven science applications

Why nonnegativity?

- ► NMF vs PCA (Lee & Seung, 1999)
- NMF: Nonnegative Matrix Factorization
- PCA: Principal Component Analysis

Nonnegativity constraints provide meaningful and interpretable results (+sparsity)

- ► Tensors (multi-dimensional arrays / multi-modal data) are everywhere:
 - color image is a 3-D tensor (RGB)
 - color movie is a 4-D tensor (RGB + time)
 - ightharpoonup observable data are typically a 5-D tensor (x, y, z, t, scalars...)
 - ightharpoonup model outputs are typically a 5-D tensor (x, y, z, t, scalars...)
 - ightharpoonup n model parameters (e.g., conductivity, capacity, etc.) impacting model outputs form a (n+5)-D tensor
 - ▶ n parameters (e.g., pressure, temperature, pH, species concentrations, etc.) impacting experiments (e.g. reaction rate) form a n-D tensor

NMF: Nonnegative Matrix Factorization

NTF: Nonnegative Tensor Factorization

Why not use PCA/SVD?

► There is no direct equivalent of PCA/SVD for multi-dimensional arrays (tensors)

Tucker Tensor Decomposition: Feature extraction

Tucker Tensor Decomposition: Feature extraction

Tucker Tensor Decomposition: Feature extraction

- ► Tucker decomposition is achieved through minimization
- Nonnegativity and sparsity constraints help the feature extraction
- ▶ Optimal number of features [k, m, n] is estimated through k-means clustering of a series minimization solutions with random initial guesses

NMFk / NTFk Analyses

- ► Field Data:
 - Groundwater contaminant migration
 - ▶ US Climate
- ► Lab Data:
 - X-ray Spectroscopy
 - UV Fluorescence Spectroscopy
- Operational Data:
 - ► LANSCE: Los Alamos Neutron Accelerator
 - ► Hydrocarbon (oil/gas) production
- ► Model Data:
 - ▶ Reactive mixing $A + B \rightarrow C$
 - ▶ Phase separation of co-polymers
 - ► Molecular Dynamics of proteins

- Geothermal
- Seismic
- Microbial population analyses

- Lattice-Boltzmann simulations of fluid displacement
- ► Europe Climate modeling

- Vesselinov, Munuduru, Karra, O'Maley, Alexandrov, Unsupervised Machine Learning Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, Journal of Computational Physics, (in review), 2018.
- ► Vesselinov, O'Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant Source Identification, Journal of Contaminant Hydrology, (accepted), 2018.
- Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with Custom Clustering, Nature Computational Materials, 2018.
- O'Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization with a D-Wave quantum annealer, PLOS ONE, (accepted), 2018.
- Vesselinov, O'Malley, Alexandrov, Contaminant source identification using semi-supervised machine learning, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2017.11.002, 2017.
- ► Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based on nonnegative matrix factorization, WRR, 10.1002/2013WR015037, 2014.

 CLM/ParFlow model developed by Stefan Kollet, Carina Furusho, Klaus Görgen et al. (Forschungszentrum Jülich, Germany)

- monthly fluctuations in the air temperature from 1989 to 2017 [°C]
- ► Tensor: $(316 \times 316 \times 348)$ $(columns \times rows \times months)$
- NTFk applied to extract dominant hidden (latent) features based on spatial footprints and temporal characteristics

Climate model of Europe: 2003 air temperature reconstruction by 3 features

Climate model of Europe: 2003 air temperature reconstruction by 4 features

Climate model of Europe: 2003 air temperature reconstruction by 5 features

Climate model of Europe: 2003 air temperature reconstruction by 6 features

Climate model of Europe: 2003 air temperature reconstruction by 7 features

Climate model of Europe: 2003 air temperature reconstruction by 8 features

Climate model of Europe: 2003 air temperature reconstruction by 9 features

Climate model of Europe: 2003 air temperature reconstruction by 10 features

Climate model of Europe: 2003 air temperature reconstruction by 15 features

Climate model of Europe: 2003 air temperature reconstruction by 20 features

Climate model of Europe: 2003 air temperature reconstruction by 25 features

Climate model of Europe: 2003 air temperature reconstruction by 30 features

Climate model of Europe: 2003 air temperature reconstruction by 35 features

Climate model of Europe: 2003 air temperature reconstruction by 40 features

Climate model of Europe: 2003 air temperature reconstruction by 45 features

Climate model of Europe: 2003 air temperature reconstruction by 50 features

Climate model of Europe: air temperature reconstruction errors

Climate model of Europe: air temperature features (8)

Climate model of Europe: air temperature features (8) 1989-2017

Climate model of Europe: air temperature features (8) 2002-2003

Climate model of Europe: air temperature reconstruction by 8 features

Climate model of Europe: air temperature reconstruction by 50 features

- ▶ daily fluctuations in the air temperature [°C]
- ► Tensor: $(424 \times 412 \times 365)$ $(columns \times rows \times days)$
- ▶ NTFk applied to extracts hidden features

Climate model of Europe: 2003 temperature fluctuations represented by 3 features

Climate model of Europe: 2003 temperature fluctuations represented by 3 features

- ightharpoonup fluctuations in the water-table depth [m]
- ► Tensor: $(424 \times 412 \times 365)$ $(columns \times rows \times days)$
- NTFk extracts spatial and temporal footprints of dominant features

Climate model of Europe: 2003 water-table fluctuations represented by 3 features

Climate model of Europe: 2003 water-table fluctuations represented by 3 features

- Find interconnections among model outputs
- Evaluate impacts of different model setups
- ► Find dominant processes impacting model predictions (e.g., climate impacts on groundwater resources, impacts of subsurface processes on atmospheric conditions)

- ➤ 32,251 seismic events from 1989 to 2017
- ► Tensor: total energy of events over a discretized domain

$$\begin{array}{l} (118 \times 97 \times 520) \\ (columns \times rows \times weeks) \end{array}$$

NTFk applied to extract dominant hidden (latent) features based on spatial footprints and temporal characteristics

Oklahoma seismic events 1991-2018: extracted signals vs. injected volumes

Summary

- Developed novel unsupervised ML methods and computational tools based on Nonnegative Factorization (Matrices/Tensors)
- Our ML methods have been used to solve various real-world problems
- Our goal is to further tests our algorithms on diverse datasets

Machine Learning (ML) Algorithms / Codes developed by our team

- ► NMFk + ShiftNMFk + GreenNMFk
- ightharpoonup NTFk
- ▶ NBMF: Quantum machine learning using D-Wave quantum annealer
- ► MADS: Model-Analyses & Decision Support
 http://mads.gitlab.io http://madsjulia.github.io/Mads.jl
- ► Feature extraction examples: http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation
- ► Slide deck / publications: http://monty.gitlab.io

NMFk / NTFk Challenges

- Identifying the number of unknown features:
 - ▶ applying custom *k*-means clustering and sparsity constraints
 - analyzing reconstruction quality (e.g., Frobenius norm) and cluster Silhouettes
- Solving a non-unique optimization problem:
 - performing multistarts, regularization and nonnegativity constraints
 - ▶ applying diverse optimization techniques (Multiplicative/Alternating Least Squares algorithms, NLopt, Ipopt, Gurobi, MOSEK, GLPK, Clp, Cbc, ...)
 - accounting for the physics
- Processing Big Data:
 - ► GPU's / TPU's / Distributed computing
 - Account for data sparsity and structure
 - Nonnegative Tensor Trains
- ► Dealing with Noisy Data:
 - Random noise impacts accuracy but its accountable
 - Systematic noise is identified as separate signals (features)

4GB Tensor ($1000 \times 1000 \times 1000$)

Framework	Execution time (seconds)
MATLAB	2634
NumPy	881
MXNet	644
PyTorch	121
TensorFlow	119
Julia	109

Unsupervised Machine Learning Applications: Exploratory Analysis

- ▶ Data Analytics: Identify signals (features) in datasets (latent variables)
 - ► Feature extraction (FE):
 - ► Blind source separation (BSS)
 - ▶ Detection of disruptions / anomalies
 - Image recognition
 - Discover unknown dependencies and phenomena
 - Guide development of physics / reduced-order models representing the data
- Model Analytics/Diagnostics: Identify processes (features) in model outputs
 - Identify dependencies between model inputs and outputs
 - ▶ Discover unknown dependencies
 - Separate processes (inseparable during modeling)
 - ► Develop ML (reduced-order) models
- Coupled Data/Model Analytics: Simultaneous analyses of data and model outputs (data/model fusion)